
Data-Oriented Design

Richard Fabian

8th October 2018

Contents

1 Data-Oriented Design 3
1.1 It’s all about the data 4
1.2 Data is not the problem domain 6
1.3 Data and statistics 12
1.4 Data can change 14
1.5 How is data formed? 18
1.6 The framework 21
1.7 Conclusions and takeaways 25

2 Relational Databases 27
2.1 Complex state 28
2.2 The framework 29
2.3 Normalising your data 32
2.4 Normalisation 36
2.5 Operations . 51
2.6 Summing up 53
2.7 Stream Processing 54
2.8 Why does database technology matter? . . . 55

3 Existential Processing 57
3.1 Complexity . 58
3.2 Debugging . 60
3.3 Why use an if 61
3.4 Types of processing 66
3.5 Don’t use booleans 68
3.6 Don’t use enums quite as much 73
3.7 Prelude to polymorphism 75
3.8 Dynamic runtime polymorphism 76
3.9 Event handling 79

i

ii CONTENTS

4 Component Based Objects 83
4.1 Components in the wild 85
4.2 Away from the hierarchy 88
4.3 Towards managers 91
4.4 There is no entity 94

5 Hierarchical Level of Detail 97
5.1 Existence . 98
5.2 Mementos . 101
5.3 JIT mementos 103
5.4 Alternative axes 106
5.5 Collective LOD 110

6 Searching 113
6.1 Indexes . 113
6.2 Data-oriented Lookup 115
6.3 Finding low and high 120
6.4 Finding random 121

7 Sorting 125
7.1 Do you need to? 125
7.2 Maintaining 128
7.3 Sorting for your platform 128

8 Optimisations 135
8.1 When should we optimise? 137
8.2 Feedback . 138
8.3 A strategy . 142
8.4 Tables . 146
8.5 Transforms . 151
8.6 Spatial sets . 152
8.7 Lazy evaluation 153
8.8 Necessity . 154
8.9 Varying length sets 155
8.10 Joins as intersections 158
8.11 Data-driven techniques 159
8.12 Structs of arrays 161

9 Helping the compiler 163
9.1 Reducing order dependence 163

CONTENTS 1

9.2 Reducing memory dependency 164
9.3 Write buffer awareness 165
9.4 Aliasing . 166
9.5 Return value optimisation 167
9.6 Cache line utilisation 168
9.7 False sharing 169
9.8 Speculative execution awareness 171
9.9 Branch prediction 172
9.10 Don’t get evicted 174
9.11 Auto vectorisation 174

10 Maintenance and reuse 179
10.1 Cosmic hierarchies 180
10.2 Debugging . 180
10.3 Reusability . 183
10.4 Reusable functions 186
10.5 Unit testing 187
10.6 Refactoring . 188

11 What’s wrong? 189
11.1 The harm . 190
11.2 Mapping the problem 196
11.3 Internalised state 202
11.4 Instance oriented development 204
11.5 Hierarchical design vs change 206
11.6 Divisions of labour 209
11.7 Reusable generic code 211

2 CONTENTS

Chapter 1

Data-Oriented Design

Data-oriented design has been around for decades in one
form or another but was only officially given a name by
Noel Llopis in his September 2009 article[?] of the same
name. Whether it is, or is not a programming paradigm
is seen as contentious. Many believe it can be used side
by side with other programming paradigms such as object-
oriented, procedural, or functional programming. In one
respect they are right, data-oriented design can function
alongside the other paradigms, but that does not preclude
it from being a way to approach programming in the large.
Other programming paradigms are known to function along-
side each other to some extent as well. A Lisp programmer
knows that functional programming can coexist with object-
oriented programming and a C programmer is well aware
that object-oriented programming can coexist with proce-
dural programming. We shall ignore these comments and
claim data-oriented design as another important tool; a tool
just as capable of coexistence as the rest. 1

1There are some limits, but it is not mutually exclusive with any paradigm
other than maybe the logic programming languages such as Prolog. The ex-
tremely declarative ”what, not how” approach does seem to exclude thinking
about the data and how it interacts with the machine.

3

4 CHAPTER 1. DATA-ORIENTED DESIGN

The time was right in 2009. The hardware was ripe for
a change in how to develop. Potentially very fast comput-
ers were hindered by a hardware ignorant programming
paradigm. The way game programmers coded at the time
made many engine programmers weep. The times have
changed. Many mobile and desktop solutions now seem
to need the data-oriented design approach less, not be-
cause the machines are better at mitigating an ineffective
approach, but the games being designed are less demanding
and less complex. The trend for mobile seems to be moving
to AAA development, which should bring the return of a
need for managing complexity and getting the most out of
the hardware.

As we now live in a world where multi-core machines in-
clude the ones in our pockets, learning how to develop soft-
ware in a less serial manner is important. Moving away from
objects messaging and getting responses immediately is part
of the benefits available to the data-oriented programmer.
Programming, with a firm reliance on awareness of the data
flow, sets you up to take the next step to GPGPU and other
compute approaches. This leads to handling the workloads
that bring game titles to life. The need for data-oriented de-
sign will only grow. It will grow because abstractions and se-
rial thinking will be the bottleneck of your competitors, and
those that embrace the data-oriented approach will thrive.

1.1 It’s all about the data

Data is all we have. Data is what we need to transform in
order to create a user experience. Data is what we load when
we open a document. Data is the graphics on the screen, the
pulses from the buttons on your gamepad, the cause of your
speakers producing waves in the air, the method by which
you level up and how the bad guy knew where you were so
as to shoot at you. Data is how long the dynamite took to ex-
plode and how many rings you dropped when you fell on the

1.1. IT’S ALL ABOUT THE DATA 5

spikes. It is the current position and velocity of every particle
in the beautiful scene that ended the game which was loaded
off the disc and into your life via transformations by machin-
ery driven by decoded instructions themselves ordered by
assemblers instructed by compilers fed with source-code.

No application is anything without its data. Adobe Pho-
toshop without the images is nothing. It’s nothing without
the brushes, the layers, the pen pressure. Microsoft Word is
nothing without the characters, the fonts, the page breaks.
FL Studio is worthless without the events. Visual Studio
is nothing without source. All the applications that have
ever been written, have been written to output data based
on some input data. The form of that data can be extremely
complex, or so simple it requires no documentation at all,
but all applications produce and need data. If they don’t
need recognisable data, then they are toys or tech demos at
best.

Instructions are data too. Instructions take up memory,
use up bandwidth, and can be transformed, loaded, saved
and constructed. It’s natural for a developer to not think of
instructions as being data2, but there is very little differenti-
ating them on older, less protective hardware. Even though
memory set aside for executables is protected from harm and
modification on most contemporary hardware, this relatively
new invention is still merely an invention, and the modified
Harvard architecture relies on the same memory for data
as it does for instructions. Instructions are therefore still
data, and they are what we transform too. We take instruc-
tions and turn them into actions. The number, size, and
frequency of them is something that matters. The idea that
we have control over which instructions we use to solve prob-
lems leads us to optimisations. Applying our knowledge of
what the data is allows us to make decisions about how the
data can be treated. Knowing the outcome of instructions
gives us the data to decide what instructions are necessary,
which are busywork, and which can be replaced with equiv-

2unless they are a Lisp programmer

6 CHAPTER 1. DATA-ORIENTED DESIGN

alent but less costly alternatives.

This forms the basis of the argument for a data-oriented
approach to development, but leaves out one major element.
All this data and the transforming of data, from strings, to
images, to instructions, they all have to run on something.
Sometimes that thing is quite abstract, such as a virtual
machine running on unknown hardware. Sometimes that
thing is concrete, such as knowing which specific CPU and
GPU you have, and the memory capacity and bandwidth you
have available. But in all cases, the data is not just data,
but data that exists on some hardware somewhere, and it
has to be transformed by that same hardware. In essence,
data-oriented design is the practice of designing software by
developing transformations for well-formed data where the
criteria for well-formed is guided by the target hardware and
the patterns and types of transforms that need to operate on
it. Sometimes the data isn’t well defined, and sometimes the
hardware is equally evasive, but in most cases a good back-
ground of hardware appreciation can help out almost every
software project.

If the ultimate result of an application is data, and all
input can be represented by data, and it is recognised that
all data transforms are not performed in a vacuum, then a
software development methodology can be founded on these
principles; the principles of understanding the data, and
how to transform it given some knowledge of how a machine
will do what it needs to do with data of this quantity, fre-
quency, and its statistical qualities. Given this basis, we can
build up a set of founding statements about what makes a
methodology data-oriented.

1.2 Data is not the problem domain

The first principle: Data is not the problem domain.

1.2. DATA IS NOT THE PROBLEM DOMAIN 7

For some, it would seem that data-oriented design is the
antithesis of most other programming paradigms because
data-oriented design is a technique that does not readily al-
low the problem domain to enter into the software as written
in source. It does not promote the concept of an object as
a mapping to the context of the user in any way, as data is
intentionally and consistently without meaning. Abstraction
heavy paradigms try to pretend the computer and its data do
not exist at every turn, abstracting away the idea that there
are bytes, or CPU pipelines, or other hardware features, and
instead bringing the model of the problem into the program.
They regularly bring either the model of the view into the
code, or the model of the world as a context for the problem.
That is, they either structure the code around attributes of
the expected solution, or they structure the code around the
description of the problem domain.

Meaning can be applied to data to create information.
Meaning is not inherent in data. When you say 4, it means
very little, but say 4 miles, or 4 eggs, it means something.
When you have 3 numbers, they mean very little as a tu-
ple, but when you name them x,y,z, you can put meaning on
them as a position. When you have a list of positions in a
game, they mean very little without context. Object-oriented
design would likely have the positions as part of an object,
and by the class name and neighbouring data (also named)
you can get an idea of what that data means. Without the
connected named contextualising data, the positions could
be interpreted in a number of different ways, and though
putting the numbers in context is good in some sense, it
also blocks thinking about the positions as just sets of three
numbers, which can be important for thinking of solutions
to the real problems the programmers are trying to solve.

For an example of what can happen when you put data
so deep inside an object that you forget its impact, consider
the numerous games released, and in production, where a
2D or 3D grid system could have been used for the data
layout, but for unknown reasons the developers kept with

8 CHAPTER 1. DATA-ORIENTED DESIGN

the object paradigm for each entity on the map. This isn’t
a singular event, and real shipping games have seen this
object-centric approach commit crimes against the hardware
by having hundreds of objects placed in WorldSpace at grid
coordinates, rather than actually being driven by a grid. It’s
possible that programmers look at a grid, and see the num-
ber of elements required to fulfil the request, and are hesitant
to the idea of allocating it in a single lump of memory. Con-
sider a simple 256 by 256 tilemap requiring 65,536 tiles. An
object-oriented programmer may think about those sixty-five
thousand objects as being quite expensive. It might make
more sense for them to allocate the objects for the tiles only
when necessary, even to the point where there literally are
sixty-five thousand tiles created by hand in editor, but be-
cause they were placed by hand, their necessity has been es-
tablished, and they are now something to be handled, rather
than something potentially worrying.

Not only is this pervasive lack of an underlying form a
poor way to handle rendering and simple element placement,
but it leads to much higher complexity when interpreting lo-
cality of elements. Gaining access to elements on a grid-
free representation often requires jumping through hoops
such as having neighbour links (which need to be kept up to
date), running through the entire list of elements (inherently
costly), or references to an auxiliary augmented grid object
or spatial mapping system connecting to the objects which
are otherwise free to move, but won’t, due to the design of the
game. This fake form of freedom introduced by the grid-free
design presents issues with understanding the data, and has
been the cause of some significant performance penalties in
some titles. Thus also causing a significant waste of pro-
grammer mental resources in all.

Other than not having grids where they make sense,
many modern games also seem to carry instances for each
and every item in the game. An instance for each rather
than a variable storing the number of items. For some
games this is an optimisation, as creation and destruction

1.2. DATA IS NOT THE PROBLEM DOMAIN 9

of objects is a costly activity, but the trend is worrying, as
these ways of storing information about the world make the
world impenetrable to simple interrogation.

Many games seem to try to keep everything about the
player in the player class. If the player dies in-game, they
have to hang around as a dead object, otherwise, they lose
access to their achievement data. This linking of what the
data is, to where it resides and what it shares lifetime with,
causes monolithic classes and hard to untangle relation-
ships which frequently turn out to be the cause of bugs. I
will not name any of the games, but it’s not just one title, nor
just one studio, but an epidemic of poor technical design that
seems to infect those who use off the shelf object-oriented
engines more than those who develop their own regardless
of paradigm.

The data-oriented design approach doesn’t build the real-
world problem into the code. This could be seen as a failing of
the data-oriented approach by veteran object-oriented devel-
opers, as examples of the success of object-oriented design
come from being able to bring the human concepts to the ma-
chine, then in this middle ground, a solution can be written
that is understandable by both human and computer. The
data-oriented approach gives up some of the human read-
ability by leaving the problem domain in the design docu-
ment, bringing elements of constraints and expectations into
the transforms, but stops the machine from having to handle
human concepts at any data level by just that same action.

Let us consider how the problem domain becomes part of
the software in programming paradigms that promote need-
less abstraction. In the case of objects, we tie meanings to
data by associating them with their containing classes and
their associated functions. In high-level abstraction, we sep-
arate actions and data by high-level concepts, which might
not apply at the low level, thus reducing the likelihood the
functions can be implemented efficiently.

When a class owns some data, it gives that data a context

10 CHAPTER 1. DATA-ORIENTED DESIGN

which can sometimes limit the ability to reuse the data or un-
derstand the impact of operations upon it. Adding functions
to a context can bring in further data, which quickly leads
to classes containing many different pieces of data that are
unrelated in themselves, but need to be in the same class
because an operation required a context and the context re-
quired more data for other reasons such as for other related
operations. This sounds awfully familiar, and Joe Armstrong
is quoted to have said “I think the lack of reusability comes
in object-oriented languages, not functional languages. Be-
cause the problem with object-oriented languages is they’ve
got all this implicit environment that they carry around with
them. You wanted a banana but what you got was a gorilla
holding the banana and the entire jungle.”3 which certainly
seems to resonate with the issue of contextual referencing
that seems to be plaguing the object-oriented languages.

You could be forgiven for believing that it’s possible to re-
move the connections between contexts by using interfaces
or dependency injection, but the connections lie deeper than
that. The contexts in the objects are often connecting differ-
ent classes of data about different categories in which the
object fits. Consider how this banana has many different
purposes, from being a fruit, to being a colour, to being a
word beginning with the letter B. We have to consider the
problem presented by the idea of the banana as an instance,
as well as the banana being a class of entity too. If we need
to gain information about bananas from the point of view of
the law on imported goods, or about its nutritional value, it’s
going to be different from information about how many we
are currently stocking. We were lucky to start with the ba-
nana. If we talk about the gorilla, then we have information
about the individual gorilla, the gorillas in the zoo or jungle,
and the class of gorilla too. This is three different layers of
abstraction about something which we might give one name.
At least with a banana, each individual doesn’t have much
in the way of important data. We see this kind of contextual
linkage all the time in the real world, and we manage the

3From Peter Seibel’s Coders at Work[?]

1.2. DATA IS NOT THE PROBLEM DOMAIN 11

complexity very well in conversation, but as soon as we start
putting these contexts down in hard terms we connect them
together and make them brittle.

All these mixed layers of abstraction become hard to un-
tangle as functions which operate over each context drag
in random pieces of data from all over the classes mean-
ing many data items cannot be removed as they would then
be inaccessible. This can be enough to stop most program-
mers from attempting large-scale evolving software projects,
but there is another issue caused by hiding the actions ap-
plied to the data that leads to unnecessary complexity. When
you see lists and trees, arrays and maps, tables and rows,
you can reason about them and their interactions and trans-
formations. If you attempt to do the same with homes and
offices, roads and commuters, coffee shops and parks, you
can often get stuck in thinking about the problem domain
concepts and not see the details that would provide clues to
a better data representation or a different algorithmic ap-
proach.

There are very few computer science algorithms that
cannot be reused on primitive data types, but when you
introduce new classes with their own internal layouts of
data, that don’t follow clearly in the patterns of existing
data-structures, then you won’t be able to fully utilise those
algorithms, and might not even be able to see how they
would apply. Putting data structures inside your object de-
signs might make sense from what they are, but they often
make little sense from the perspective of data manipulation.

When we consider the data from the data-oriented design
point of view, data is mere facts that can be interpreted in
whatever way necessary to get the output data in the format
it needs to be. We only care about what transforms we do,
and where the data ends up. In practice, when you discard
meanings from data, you also reduce the chance of tangling
the facts with their contexts, and thus you also reduce the
likelihood of mixing unrelated data just for the sake of an

12 CHAPTER 1. DATA-ORIENTED DESIGN

operation or two.

1.3 Data and statistics

The second principle: Data is the type, frequency, quantity,
shape, and probability.

The second statement is that data is not just the struc-
ture. A common misconception about data-oriented design
is that it’s all about cache misses. Even if it was all about
making sure you never missed the cache, and it was all about
structuring your classes so the hot and cold data was split
apart, it would be a generally useful addition to your pro-
gramming toolkit, but data-oriented design is about all as-
pects of the data. To write a book on how to avoid cache
misses, you need more than just some tips on how to organ-
ise your structures, you need a grounding in what is really
happening inside your computer when it is running your pro-
gram. Teaching that in a book is also impossible as it would
only apply to one generation of hardware, and one genera-
tion of programming languages, however, data-oriented de-
sign is not rooted in just one language and just some unusual
hardware, even though the language to best benefit from it
is C++, and the hardware to benefit the approach the most
is anything with unbalanced bottlenecks. The schema of the
data is important, but the values and how the data is trans-
formed are as important, if not more so. It is not enough to
have some photographs of a cheetah to determine how fast it
can run. You need to see it in the wild and understand the
true costs of being slow.

The data-oriented design model is centred around data.
It pivots on live data, real data, data that is also information.
Object-oriented design is centred around the problem defini-
tion. Objects are not real things but abstract representations
of the context in which the problem will be solved. The ob-
jects manipulate the data needed to represent them without

1.3. DATA AND STATISTICS 13

any consideration for the hardware or the real-world data
patterns or quantities. This is why object-oriented design
allows you to quickly build up first versions of applications,
allowing you to put the first version of the design document
or problem definition directly into the code, and make a quick
attempt at a solution.

Data-oriented design takes a different approach to the
problem, instead of assuming we know nothing about the
hardware, it assumes we know little about the true nature
of our problem, and makes the schema of the data a second-
class citizen. Anyone who has written a sizeable piece of
software may recognise that the technical structure and the
design for a project often changes so much that there is
barely any section from the first draft remaining unchanged
in the final implementation. Data-oriented design avoids
wasting resources by never assuming the design needs to
exist anywhere other than in a document. It makes progress
by providing a solution to the current problem through some
high-level code controlling sequences of events and specify-
ing schema in which to give temporary meaning to the data.

Data-oriented design takes its cues from the data which
is seen or expected. Instead of planning for all eventualities,
or planning to make things adaptable, there is a preference
for using the most probable input to direct the choice of al-
gorithm. Instead of planning to be extendable, it plans to be
simple and replaceable, and get the job done. Extendable
can be added later, with the safety net of unit tests to ensure
it remains working as it did while it was simple. Luckily,
there is a way to make your data layout extendable without
requiring much thought, by utilising techniques developed
many years ago for working with databases.

Database technology took a great turn for the positive
when the relational model was introduced. In the paper Out
of the Tar Pit [?], Functional Relational Programming takes
it a step further when it references the idea of using re-
lational model data-structures with functional transforms.

14 CHAPTER 1. DATA-ORIENTED DESIGN

These are well defined, and much literature on how to adapt
their form to match your requirements is available.

1.4 Data can change

Data-oriented design is current. It is not a representation of
the history of a problem or a solution that has been brought
up to date, nor is it the future, with generic solutions made
up to handle whatever will come along. Holding onto the past
will interfere with flexibility, and looking to the future is gen-
erally fruitless as programmers are not fortune tellers. It’s
the opinion of the author, that future-proof systems rarely
are. Object-oriented design starts to show its weaknesses
when designs change in the real-world.

Object-oriented design is known to handle changes to un-
derlying implementation details very well, as these are the
expected changes, the obvious changes, and the ones often
cited in introductions to object-oriented design. However,
real world changes such as change of user’s needs, changes
to input format, quantity, frequency, and the route by which
the information will travel, are not handled with grace. It was
introduced in On the Criteria To Be Used in Decomposing Sys-
tems into Modules[?] that the modularisation approach used
by many at the time was rather like that of a production
line, where elements of the implementation are caught up
in the stages of the proposed solution. These stages them-
selves would be identified with a current interpretation of the
problem. In the original document, the solution was to intro-
duce a data hiding approach to modularisation, and though
it was an improvement, in the later book Software Pioneers:
Contributions to Software Engineering[?], D. L. Parnas revis-
its the issue and reminds us that even though initial soft-
ware development can be faster when making structural de-
cisions based on business facts, it lays a burden on main-
tenance and evolutionary development. Object-oriented de-
sign approaches suffer from this inertia inherent in keeping

1.4. DATA CAN CHANGE 15

the problem domain coupled with the implementation. As
mentioned, the problem domain, when introduced into the
implementation, can help with making decisions quickly, as
you can immediately see the impact the implementation will
have on getting closer to the goal of solving or working with
the problem in its current form. The problem with object-
oriented design lies in the inevitability of change at a higher
level.

Designs change for multiple reasons, occasionally includ-
ing times when they actually haven’t. A misunderstanding
of a design, or a misinterpretation of a design, will cause as
much change in the implementation as a literal request for
change of design. A data-oriented approach to code design
considers the change in design through the lens of under-
standing the change in the meaning of the data. The data-
oriented approach to design also allows for change to the
code when the source of data changes, unlike the encap-
sulated internal state manipulations of the object-oriented
approach. In general, data-oriented design handles change
better as pieces of data and transforms can be more sim-
ply coupled and decoupled than objects can be mutated and
reused.

The reason this is so, comes from linking the intention,
or the aspect, to the data. When lumping data and func-
tions in with concepts of objects, you find the objects are
the schema of the data. The aspect of the data is linked
to that object, which means it’s hard to think of the data
from another point of view. The use case of the data, and
the real-world or design, are now linked to the data layout
through a singular vision implied by the object definition. If
you link your data layout to the union of the required data
for your expected manipulations, and your data manipula-
tions are linked by aspects of your data, then you make it
hard to unlink data related by aspect. The difficulty comes
when different aspects need different subsets of the data,
and they overlap. When they overlap, they create a larger
and larger set of values that need to travel around the sys-

16 CHAPTER 1. DATA-ORIENTED DESIGN

tem as one unit. It’s common to refactor a class out into
two or more classes, or give ownership of data to a different
class. This is what is meant by tying data to an aspect. It
is tied to the lens through which the data has purpose, but
with static typed objects that purpose is predefined, a union
of multiple purposes, and sometimes carries around defunct
relationships. Some purposes may no longer required by the
design. Unfortunately, it’s easier to see when a relationship
needs to exist, than when it doesn’t, and that leads to more
connections, not fewer, over time.

If you link your operations by related data, such as when
you put methods on a class, you make it hard to unlink your
operations when the data changes or splits, and you make
it hard to split data when an operation requires the data
to be together for its own purposes. If you keep your data
in one place, operations in another place, and keep the as-
pects and roles of data intrinsic from how the operations and
transforms are applied to the data, then you will find that
many times when refactoring would have been large and dif-
ficult in object-oriented code, the task now becomes trivial
or non-existent. With this benefit comes a cost of keeping
tabs on what data is required for each operation, and the
potential danger of de-synchronisation. This consideration
can lead to keeping some cold code in an object-oriented style
where objects are responsible for maintaining internal con-
sistency over efficiency and mutability. Examples of places
where object-oriented design is far superior to data-oriented
can be that of driver layers for systems or hardware. Even
though Vulkan and OpenGL are object-oriented, the gran-
ularity of the objects is large and linked to stable concepts
in their space, just like the object-oriented approach of the
FILE type or handle, in open, close, read, and write opera-
tions in filesystems.

A big misunderstanding for many new to the data-oriented
design paradigm, a concept brought over from abstraction
based development, is that we can design a static library or
set of templates to provide generic solutions to everything

1.4. DATA CAN CHANGE 17

presented in this book as a data-oriented solution. Much like
with domain driven design, data-oriented design is product
and work-flow specific. You learn how to do data-oriented
design, not how to add it to your project. The fundamental
truth is that data, though it can be generic by type, is not
generic in how it is used. The values are different and often
contain patterns we can turn to our advantage. The idea
that data can be generic is a false claim that data-oriented
design attempts to rectify. The transforms applied to data
can be generic to some extent, but the order and selection of
operations are literally the solution to the problem. Source
code is the recipe for conversion of data from one form into
another. There cannot be a library of templates for under-
standing and leveraging patterns in the data, and that’s
what drives a successful data-oriented design. It’s true we
can build algorithms to find patterns in data, otherwise,
how would it be possible to do compression, but the pat-
terns we think about when it comes to data-oriented design
are higher level, domain-specific, and not simple frequency
mappings.

Our run-time benefits from specialisation through perfor-
mance tricks that sometimes make the code harder to read,
but it is frequently discouraged as being not object-oriented,
or being too hard-coded. It can be better to hard-code a
transform than to pretend it’s not hard-coded by wrapping it
in a generic container and using less direct algorithms on it.
Using existing templates like this provides a benefit of an in-
crease in readability for those who already know the library,
and potentially fewer bugs if the functionality was in some
way generic. But, if the functionality was not well mapped to
the existing generic solution, writing it with a function tem-
plate and then extending will make the code harder to under-
stand. Hiding the fact that the technique had been changed
subtly will introduced false assumptions. Hard-coding a new
algorithm is a better choice as long as it has sufficient tests,
and is objectively new. Tests will also be easier to write if
you constrain yourself to the facts about concrete data and
only test with real, but simple data for your problem, and

18 CHAPTER 1. DATA-ORIENTED DESIGN

not generic types on generic data.

1.5 How is data formed?

The games we write have a lot of data, in a lot of different
formats. We have textures in multiple formats for multi-
ple platforms. There are animations, usually optimised for
different skeletons or types of playback. There are sounds,
lights, and scripts. Don’t forget meshes, they consist of mul-
tiple buffers of attributes. Only a very small proportion of
meshes are old fixed function type with vertices containing
positions, UVs, and normals. The data in game development
is hard to box, and getting harder to pin down as more ideas
which were previously considered impossible have now be-
come commonplace. This is why we spend a lot of time work-
ing on editors and tool-chains, so we can take the free-form
output from designers and artists and find a way to put it
into our engines. Without our tool-chains, editors, viewers,
and tweaking tools, there would be no way we could pro-
duce a game with the time we have. The object-oriented ap-
proach provides a good way to wrap our heads around all
these different formats of data. It gives a centralised view
of where each type of data belongs and classifies it by what
can be done to it. This makes it very easy to add and use
data quickly, but implementing all these different wrapper
objects takes time. Adding new functionality to these ob-
jects can sometimes require large amounts of refactoring as
occasionally objects are classified in such a way that they
don’t allow for new features to exist. For example, in many
old engines, textures were always 1,2, or 4 bytes per pixel.
With the advent of floating point textures, all that code re-
quired a minor refactoring. In the past, it was not possible
to read a texture from the vertex shader, so when texture
based skinning came along, many engine programmers had
to refactor their render update. They had to allow for a vertex
shader texture upload because it might be necessary when
uploading transforms for rendering a skinned mesh. When

1.5. HOW IS DATA FORMED? 19

the PlayStation2 came along, or an engine first used shaders,
the very idea of what made a material had to change. In
the move from small 3D environments to large open worlds
with level of detail caused many engineers to start think-
ing about what it meant for something to need rendering.
When newer hardware became more picky about alignment,
other hard to inject changes had to be made. In many en-
gines, mesh data is optimised for rendering, but when you
have to do mesh ray casting to see where bullets have hit, or
for doing IK, or physics, then you need multiple representa-
tions of an entity. At this point, the object-oriented approach
starts to look cobbled together as there are fewer objects that
represent real things, and more objects used as containers
so programmers can think in larger building blocks. These
blocks hinder though, as they become the only blocks used
in thought, and stop potential mental connections from hap-
pening. We went from 2D sprites to 3D meshes, following the
format of the hardware provider, to custom data streams and
compute units turning the streams into rendered triangles.
Wave data, to banks, to envelope controlled grain tables and
slews of layered sounds. Tilemaps, to portals and rooms, to
streamed, multiple levels of detail chunks of world, to hybrid
mesh palette, props, and unique stitching assets. From flip-
book to Euler angle sequences, to quaternions and spherical
interpolated animations, to animation trees and behaviour
mapping/trees. Change is the only constant.

All these types of data are pretty common if you’ve worked
in games at all, and many engines do provide an abstraction
to these more fundamental types. When a new type of data
becomes heavily used it is promoted into engines as a core
type. We normally consider the trade-off of new types being
handled as special cases until they become ubiquitous to be
one of usability vs performance. We don’t want to provide
free access to the lesser understood elements of game devel-
opment. People who are not, or can not, invest time in find-
ing out how best to use new features, are discouraged from
using them. The object-oriented game development way to
do that is to not provide objects which represent them, and

20 CHAPTER 1. DATA-ORIENTED DESIGN

instead only offer the features to people who know how to
utilise the more advanced tools.

Apart from the objects representing digital assets, there
are also objects for internal game logic. For every game,
there are objects which only exist to further the game-play.
Collectable card games have a lot of textures, but they also
have a great deal of rules, card stats, player decks, match
records, with many objects to represent the current state of
play. All of these objects are completely custom designed for
one game. There may be sequels, but unless it’s primarily a
re-skin, it will use quite different game logic in many places,
and therefore require different data, which would imply dif-
ferent methods on the now guaranteed to be internally dif-
ferent objects.

Game data is complex. Any first layout of the data is in-
spired by the game’s initial design. Once development is un-
derway, the layout needs to keep up with whichever way the
game evolves. Object-oriented techniques offer a quick way
to implement any given design, are very quick at implement-
ing each singular design in turn, but don’t offer a clean or
graceful way to migrate from one data schema to the next.
There are hacks, such as those used in version based asset
handlers, or in frameworks backed by update systems and
conversion scripts, but normally, game developers change
the tool-chain and the engine at the same time, do a full re-
export of all the assets, then commit to the next version all
in one go. This can be quite a painful experience if it has to
happen over multiple sites at the same time, or if you have
a lot of assets, or if you are trying to provide engine sup-
port for more than one title, and only one wants to change
to the new revision. An example of an object-oriented ap-
proach that handles migration of design with some grace is
the Django framework, but the reason it handles the migra-
tion well is that the objects would appear to be views into
data models, not the data itself.

There have not yet been any successful efforts to build a

1.6. THE FRAMEWORK 21

generic game asset solution. This may be because all games
differ in so many subtle ways that if you did provide a generic
solution, it wouldn’t be a game solution, just a new language.
There is no solution to be found in trying to provide all the
possible types of object a game can use. But, there is a so-
lution if we go back to thinking about a game as merely run-
ning a set of computations on some data. The closest we
can get in 2018 is the FBX format, with some dependence
on the current standard shader languages. The current so-
lutions appear to have excess baggage which does not seem
easy to remove. Due to the need to be generic, many details
are lost through abstractions and strategies to present data
in a non-confrontational way.

1.6 What can provide a computational
framework for such complex data?

Game developers are notorious for thinking about game
development from either a low level all out performance
perspective or from a very high-level gameplay and inter-
action perspective. This may have come about because of
the widening gap between the amount of code that has to be
high performance, and the amount of code to make the game
complete. Object-oriented techniques provide good coverage
of the high-level aspect, so the high-level programmers are
content with their tools. The performance specialists have
been finding ways of doing more with the hardware, so
much so that a lot of the time content creators think they
don’t have a part in the optimisation process. There has
never been much of a middle ground in game development,
which is probably the primary reason why the structure
and performance techniques employed by big-iron compa-
nies didn’t seem useful. The secondary reason could be
that game developers don’t normally develop systems and
applications which have decade-long maintenance expecta-

22 CHAPTER 1. DATA-ORIENTED DESIGN

tions4 and therefore are less likely to be concerned about
why their code should be encapsulated and protected or
at least well documented. When game development was
first flourishing into larger studios in the late 1990’s, aca-
demic or corporate software engineering practices were seen
as suspicious because wherever they were employed, there
was a dramatic drop in game performance, and whenever
any prospective employees came from those industries, they
failed to impress. As games machines became more like the
standard micro-computers, and standard micro-computers
drew closer in design to the mainframes of old, the more ap-
parent it became that some of those standard professional
software engineering practices could be useful. Now the
scale of games has grown to match the hardware, but the
games industry has stopped looking at where those non-
game development practices led. As an industry, we should
be looking to where others have gone before us, and the clos-
est set of academic and professional development techniques
seem to be grounded in simulation and high volume data
analysis. We still have industry-specific challenges such as
the problems of high frequency highly heterogeneous trans-
formational requirements that we experience in sufficiently
voluminous AI environments, and we have the issue of user
proximity in networked environments, such as the problems
faced by MMOs when they have location-based events, and
bandwidth starts to hit n2 issues as everyone is trying to
message everyone else.

With each successive generation, the number of devel-
oper hours to create a game has grown, which is why project
management and software engineering practices have be-
come standardised at the larger games companies. There
was a time when game developers were seen as cutting-edge
programmers, inventing new technology as the need arises,
but with the advent of less adventurous hardware (most no-
tably in the x86 based recent 8thgenerations), there has been
a shift away from ingenious coding practices, and towards a

4people at Blizzard Entertainment, Inc. likely have something to say
about this

1.6. THE FRAMEWORK 23

standardised process. This means game development can be
tuned to ensure the release date will coincide with market-
ing dates. There will always be an element of randomness
in high profile game development. There will always be an
element of innovation that virtually guarantees you will not
be able to predict how long the project, or at least one part
of the project, will take. Even if data-oriented design isn’t
needed to make your game go faster, it can be used to make
your game development schedule more regular.

Part of the difficulty in adding new and innovative fea-
tures to a game is the data layout. If you need to change the
data layout for a game, it will need objects to be redesigned
or extended in order to work within the existing framework.
If there is no new data, then a feature might require that
previously separate systems suddenly be able to talk to each
other quite intimately. This coupling can often cause system-
wide confusion with additional temporal coupling and corner
cases so obscure they can only be reproduced one time in
a million. These odds might sound fine to some developers,
but if you’re expecting to sell five to fifty million copies of your
game, at one in a million, that’s five to fifty people who will
experience the problem, can take a video of your game be-
having oddly, post it on the YouTube, and call your company
rubbish, or your developers lazy, because they hadn’t fixed
an obvious bug. Worse, what if the one in a million issue
was a way to circumvent in-app-purchases, and was repro-
ducible if you knew what to do and the steps start spreading
on Twitter, or maybe created an economy-destroying influx
of resources in a live MMO universe5. In the past, if you had
sold five to fifty million copies of your game, you wouldn’t
care, but with the advent of free-to-play games, five million
players might be considered a good start, and poor reviews
coming in will curb the growth. IAP circumventions will kill
your income, and economy destruction will end you.

5The webcomic and anecdotes site The-Trenches did a se-
quence of strips in a webcomic on this, and pointed out
many of the issues with trying to fix it once it has gone live
http://www.trenchescomic.com/comic/post/apocalypse

24 CHAPTER 1. DATA-ORIENTED DESIGN

Big iron developers had these same concerns back in the
1970’s. Their software had to be built to high standards be-
cause their programs would frequently be working on data
concerned with real money transactions. They needed to
write business logic that operated on the data, but most im-
portant of all, they had to make sure the data was updated
through a provably careful set of operations in order to main-
tain its integrity. Database technology grew from the need to
process stored data, to do complex analysis on it, to store and
update it, and be able to guarantee it was valid at all times.
To do this, the ACID test was used to ensure atomicity, con-
sistency, isolation, and durability. Atomicity was the test to
ensure all transactions would either complete or do noth-
ing. It could be very bad for a database to update only one
account in a financial transaction. There could be money
lost or created if a transaction was not atomic. Consistency
was added to ensure all the resultant state changes which
should happen during a transaction do happen, that is, all
triggers which should fire, do fire, even if the triggers cause
triggers recursively, with no limit. This would be highly im-
portant if an account should be blocked after it has triggered
a form of fraud detection. If a trigger has not fired, then
the company using the database could risk being liable for
even more than if they had stopped the account when they
first detected fraud. Isolation is concerned with ensuring all
transactions which occur cannot cause any other transac-
tions to differ in behaviour. Normally this means that if two
transactions appear to work on the same data, they have to
queue up and not try to operate at the same time. Although
this is generally good, it does cause concurrency problems.
Finally, durability. This was the second most important el-
ement of the four, as it has always been important to en-
sure that once a transaction has completed, it remains so.
In database terminology, durability meant the transaction
would be guaranteed to have been stored in such a way that
it would survive server crashes or power outages. This was
important for networked computers where it would be im-
portant to know what transactions had definitely happened
when a server crashed or a connection dropped.

1.7. CONCLUSIONS AND TAKEAWAYS 25

Modern networked games also have to worry about highly
important data like this. With non-free downloadable con-
tent, consumers care about consistency. With consumable
downloadable content, users care a great deal about every
transaction. To provide much of the functionality required of
the database ACID test, game developers have gone back to
looking at how databases were designed to cope with these
strict requirements and found reference to staged commits,
idempotent functions, techniques for concurrent develop-
ment, and a vast literature base on how to design tables for
a database.

1.7 Conclusions and takeaways

We’ve talked about data-oriented design being a way to think
about and lay out your data and to make decisions about
your architecture. We have two principles that can drive
many of the decisions we need to make when doing data-
oriented design. To finish the chapter, there are some take-
aways you can use immediately to begin your journey.

Consider how your data is being influenced by what it’s
called. Consider the possibility that the proximity of other
data can influence the meaning of your data, and in doing
so, trap it in a model that inhibits flexibility. For the consid-
eration of the first principle, data is not the problem domain,
it’s worth thinking about the following items.

• What is tying your data together, is it a concept or im-
plied meaning?

• Is your data layout defined by a single interpretation
from a single point of view?

• Think about how the data could be reinterpreted and
cut along those lines.

• What is it about the data that makes it uniquely impor-
tant?

26 CHAPTER 1. DATA-ORIENTED DESIGN

You are not targeting an unknown device with unknow-
able characteristics. Know your data, and know your tar-
get hardware. To some extent, understand how much each
stream of data matters, and who is consuming it. Under-
stand the cost and potential value of improvements. Access
patterns matter, as you cannot hit the cache if you’re ac-
cessing things in a burst, then not touching them again for
a whole cycle of the application. For the consideration of the
second principle, data is the type, frequency, quantity, shape,
and probability, it’s worth thinking about the following items.

• What is the smallest unit of memory on your target plat-
form?6

• When you read data, how much of it are you using?
• How often do you need the data? Is it once, or a thou-

sand times a frame?
• How do you access the data? At random, or in a burst?
• Are you always modifying the data, or just reading it?

Are you modifying all of it?
• Who does the data matter to, and what about it mat-

ters?
• Find out the quality constraints of your solutions, in

terms of bandwidth and latency.
• What information do you have that isn’t in the data per-

se? What is implicit?

6On most machines in 2018, the smallest unit of memory is 64 byte
aligned lump called a cache line.

Chapter 2

Relational Databases

In order to lay your data out better, it’s useful to have an
understanding of the methods available to convert your ex-
isting structures into something linear. The problems we
face when applying data-oriented approaches to existing
code and data layouts usually stem from the complexity of
state inherent in data-hiding or encapsulating programming
paradigms. These paradigms hide away internal state so you
don’t have to think about it, but they hinder when it comes
to reconfiguring data layouts. This is not because they don’t
abstract enough to allow changes to the underlying structure
without impacting the correctness of the code that uses it,
but instead because they have connected and given meaning
to the structure of the data. That type of coupling can be
hard to remove.

In this chapter, we go over some of the pertinent parts
of the relational model, relational database technology, and
normalisation, as these are examples of converting highly
complex data structures and relationships into very clean
collections of linear storable data entries.

You certainly don’t have to move your data to a database
style to do data-oriented design, but there are many places

27

28 CHAPTER 2. RELATIONAL DATABASES

where you will wish you had a simple array to work with, and
this chapter will help you by giving you an example of how
you can migrate from a web of connected complex objects to
a simpler to reason about relational model of arrays.

2.1 Complex state

When you think about the data present in most software,
it has some qualities of complexity or interconnectedness.
When it comes to game development, there are many ways
in which the game entities interact, and many ways in which
their attached resources will need to feed through different
stages of processes to achieve the audio, visual and some-
times haptic feedback necessary to fully immerse the player.
For many programmers brought up on object-oriented de-
sign, the idea of reducing the types of structure available
down to just simple arrays, is virtually unthinkable. It’s very
hard to go from working with objects, classes, templates, and
methods on encapsulated data to a world where you only
have access to linear containers.

In A Relational Model of Data for Large Shared Data
Banks[?], Edgar F. Codd proposed the relational model to
handle the current and future needs of agents interacting
with data. He proposed a solution to structuring data for
insert, update, delete, and query operations. His proposal
claimed to reduce the need to maintain a deep understand-
ing of how the data was laid out to use it well. His proposal
also claimed to reduce the likelihood of introducing internal
inconsistencies.

The relational model provided a framework, and in Fur-
ther Normalization of the Data Base Relational Model.[?],
Edgar F. Codd introduced the fundamental terms of nor-
malisation we use to this day in a systematic approach to
reducing the most complex of interconnected state informa-
tion to linear lists of unique independent tuples.

2.2. THE FRAMEWORK 29

2.2 What can provide a computational
framework for complex data?

Databases store highly complex data in a structured way
and provide a language for transforming and generating re-
ports based on that data. The language, SQL, invented in
the 1970’s by Donald D. Chamberlin and Raymond F. Boyce
at IBM, provides a method by which it is possible to store
computable data while also maintaining data relationships
following in the form of the relational model. Games don’t
have simple computable data, they have classes and objects.
They have guns, swords, cars, gems, daily events, textures,
sounds, and achievements. It is very easy to conclude that
database technology doesn’t work for the object-oriented ap-
proach game developers use.

The data relationships in games can be highly complex,
it would seem at first glance that it doesn’t neatly fit into
database rows. A CD collection easily fits in a database,
with your albums neatly arranged in a single table. But,
many game objects won’t fit into rows of columns. For the
uninitiated, it can be hard to find the right table columns
to describe a level file. Trying to find the right columns to
describe a car in a racing game can be a puzzle. Do you
need a column for each wheel? Do you need a column for
each collision primitive, or just a column for the collision
mesh?

An obvious answer could be that game data doesn’t fit
neatly into the database way of thinking. However, that’s
only because we’ve not normalised the data. To show how
you can convert from a network model, or hierarchical model
to what we need, we will work through these normalisation
steps. We’ll start with a level file as we find out how these
decades-old techniques can provide a very useful insight into
what game data is really doing.

We shall discover that everything we do is already in a

30 CHAPTER 2. RELATIONAL DATABASES

database, but it wasn’t obvious to us because of how we
store our data. The structure of any data is a trade-off be-
tween performance, readability, maintenance, future proof-
ing, extendibility, and reuse. For example, the most flexible
database in common use is your filesystem. It has one ta-
ble with two columns. A primary key of the file path, and a
string for the data. This simple database system is the per-
fect fit for a completely future proof system. There’s nothing
that can’t be stored in a file. The more complex the tables
get, the less future proof, and the less maintainable, but
the higher the performance and readability. For example, a
file has no documentation of its own, but the schema of a
database could be all that is required to understand a suffi-
ciently well-designed database. That’s how games don’t even
appear to have databases. They are so complex, for the sake
of performance, they have forgotten they are merely a data
transform. This sliding scale of complexity affects scalability
too, which is why some people have moved towards NoSQL
databases, and document store types of data storage. These
systems are more like a filesystem where the documents are
accessed by name, and have fewer limits on how they are
structured. This has been good for horizontal scalability, as
it’s simpler to add more hardware when you don’t have to
keep your data consistent across multiple tables that might
be on different machines. There may come a day when mem-
ory is so tightly tied to the closest physical CPU, or when
memory chips themselves get more processing power, or run-
ning 100 SoCs inside your desktop rig is more effective than
a single monolithic CPU, that moving to document store at
the high-level could be beneficial inside your app, but for
now, there do not seem to be any benefits in that processing
model for tasks on local hardware.

We’re not going to go into the details of the lowest level
of how we utilise large data primitives such as meshes, tex-
tures, sounds and such. For now, think of these raw assets
(sounds, textures, vertex buffers, etc.) as primitives, much
like the integers, floating point numbers, strings and boolean
values we shall be working with. We do this because the re-

2.2. THE FRAMEWORK 31

lational model calls for atomicity when working with data.
What is and is not atomic has been debated without an abso-
lute answer becoming clear, but for the intents of developing
software intended for human consumption, the granularity
can be rooted in considering the data from the perspective
of human perception. There are existing APIs that present
strings in various ways depending on how they are used,
for example the difference between human-readable strings
(usually UTF-8) and ASCII strings for debugging. Adding
sounds, textures, and meshes to this seems quite natural
once you realise all these things are resources which if cut
into smaller pieces begin to lose what it is that makes them
what they are. For example, half of a sentence is a lot less
useful than a whole one, and loses integrity by disassocia-
tion. A slice of a sentence is clearly not reusable in any mean-
ingful way with another random slice of a different sentence.
Even subtitles are split along meaningful boundaries, and
it’s this idea of meaningful boundary that gives us the our
definition of atomicity for software developed for humans. To
this end, when working with your data, when you’re normal-
ising, try to stay at the level of nouns, the nameable pieces.
A whole song can be an atom, but so is a single tick sound
of a clock. A whole page of text is an atom, but so is the
player’s gamer-tag.

32 CHAPTER 2. RELATIONAL DATABASES

2.3 Normalising your data

Figure 2.1: Visual representation of the setup script

We’re going to work with a level file for a game where you hunt
for keys to unlock doors in order to get to the exit room. The
level file is a sequence of script calls which create and con-
figure a collection of different game objects which represent
a playable level of the game, and the relationships between
those objects. First, we’ll assume it contains rooms (some
trapped, some not), with doors leading to other rooms which
can be locked. It will also contain a set of pickups, some let
the player unlock doors, some affect the player’s stats (like
health potions and armour), and all the rooms have lovely
textured meshes, as do all the pickups. One of the rooms is
marked as the exit, and one has a player start point.

1 // create rooms , pickups , and other things.
2 Mesh msh_room = LoadMesh("roommesh");
3 Mesh msh_roomstart = LoadMesh(" roommeshstart ");
4 Mesh msh_roomtrapped = LoadMesh(" roommeshtrapped ");
5 Mesh msh_key = LoadMesh("keymesh");
6 Mesh msh_pot = LoadMesh(" potionmesh ");
7 Mesh msh_arm = LoadMesh(" armourmesh ");
8 // ...
9 Texture tex_room = LoadTexture(" roomtexture ");

10 Texture tex_roomstart = LoadTexture(" roomtexturestart ");
11 Texture tex_roomtrapped = LoadTexture(" roomtexturetrapped ");
12 Texture tex_key = LoadTexture(" keytexture ");
13 Texture tex_pot = LoadTexture(" potiontexture ");
14 Texture tex_arm = LoadTexture(" armourtexture ");

2.3. NORMALISING YOUR DATA 33

15
16 Anim anim_keybob = LoadAnim(" keybobanim ");
17 // ...
18 PickupID k1 = CreatePickup(TYPE_KEY , msh_key , tex_key ,

TintColourCopper , anim_keybob);
19 PickupID k2 = CreatePickup(TYPE_KEY , msh_key , tex_key ,

TintColourSilver , anim_keybob);
20 PickupID k3 = CreatePickup(TYPE_KEY , msh_key , tex_key ,

TintColourGold , anim_keybob);
21 PickupID p1 = CreatePickup(TYPE_POTION , msh_pot , tex_pot ,

TintColourGreen);
22 PickupID p2 = CreatePickup(TYPE_POTION , msh_pot , tex_pot ,

TintColourPurple);
23 PickupID a1 = CreatePickup(TYPE_ARMOUR , msh_arm , tex_arm);
24 // ...
25 Room r1 = CreateRoom(WorldPos (0,0), msh_roomstart , tex_roomstart

);
26 Room r2 = CreateRoom(WorldPos (-20,0), msh_roomtrapped ,

tex_roomtrapped , HPDamage (10));
27 Room r3 = CreateRoom(WorldPos (-10,20), msh_room , tex_room);
28 Room r4 = CreateRoom(WorldPos (-30,20), msh_room , tex_room);
29 Room r5 = CreateRoom(WorldPos (20 ,10), msh_roomtrapped ,

tex_roomtrapped , HPDamage (25));
30 // ...
31 AddDoor(r1 , r2);
32 AddDoor(r1 , r3, k1);
33 SetRoomAsSpecial(r1 , E_STARTINGROOM , WorldPos (1,1));
34 //
35 AddPickup(r2 , k1, WorldPos (-18,2));
36 AddDoor(r2 , r1);
37 AddDoor(r2 , r4, k2);
38 // ...
39 AddPickup(r3 , k2, WorldPos (-8,12));
40 AddPickup(r3 , p1, WorldPos (-7,13));
41 AddPickup(r3 , a1, WorldPos (-8,14));
42 AddDoor(r3 , r1);
43 AddDoor(r3 , r2);
44 AddDoor(r3 , r5, k3);
45 // ...
46 AddDoor(r4 , r2);
47 AddPickup(r4 , k3, WorldPos (-28,14));
48 AddPickup(r4 , p2, WorldPos (-27,13));
49 // ...
50 SetRoomAsSpecial(r5 , E_EXITROOM);

Listing 2.1: A setup script

In this setup script (Listing 2.1) we load some resources,
create some pickup prototypes, build up a few rooms, add
some instances to the rooms, and then link things together.
Here we also see a standard solution to the problem of things
which reference each other. We create the rooms before we
connect them to each other because before they exist we
can’t. When we create entities in C++, we assume they are
bound to memory, and the only efficient way to reference
them is through pointers, but we cannot know where they
exist in memory before we allocate them, and we cannot allo-
cate them before filling them out with their data as the allo-
cation and initialisation are bound to each other through the
‘new’ mechanism. This means we have difficulty describing
relationships between objects before they exist and have to

34 CHAPTER 2. RELATIONAL DATABASES

stagger the creation of content into phases of setting up and
connecting things together.

To bring this setup script into a usable database-like for-
mat, or relational model, we will need to normalise it. When
putting things in a relational model of any sort, it needs to
be in tables. In the first step you take all the data and put
it into a very messy, but hopefully complete, table design. In
our case we take the form of the data from the object cre-
ation script and fit it into a table. The asset loading can be
directly translated into tables, as can be seen in table 2.1

Meshes
MeshID MeshName
msh rm "roommesh"

msh rmstart "roommeshstart"

msh rmtrap "roommeshtrapped"

msh key "keymesh"

msh pot "potionmesh"

msh arm "armourmesh"

Textures
TextureID TextureName
tex rm "roomtexture"

tex rmstart "roomtexturestart"

tex rmtrapped "roomtexturetrapped"

tex key "keytexture"

tex pot "potiontexture"

tex arm "armourtexture"

Animations
AnimID AnimName
anim keybob "keybobanim"

Table 2.1: Initial tables created by converting asset load calls

Primed with this data, it’s now possible for us to create
the Pickups. We convert the calls to CreatePickup into the
tables in table 2.2. Notice that there was a pickup which
did not specify a colour tint, and this means we need to use
a NULL to represent not giving details about that aspect of
the row. The same applies to animations. Only keys had
animations, so there needs to be NULL entries for all non-
key rows.

2.3. NORMALISING YOUR DATA 35

Pickups
PickupID MeshID TextureID PickupType ColourTint Anim
k1 msh key tex key KEY Copper anim keybob
k2 msh key tex key KEY Silver anim keybob
k3 msh key tex key KEY Gold anim keybob
p1 msh pot tex pot POTION Green NULL
p2 msh pot tex pot POTION Purple NULL
a1 msh arm tex arm ARMOUR NULL NULL

Table 2.2: Initial tables created by converting CreatePickup
calls

Once we have loaded the assets and have created the
pickup prototypes, we move onto creating a table for rooms.
We need to invent attributes as necessary using NULL ev-
erywhere that an instance doesn’t have that attribute. We
convert the calls to CreateRoom, AddDoor, SetRoomAsSpe-
cial, and AddPickup, to columns in the Rooms table. See
table 2.3 for one way to build up a table that represents all
those setup function calls.

Rooms
RoomID MeshID TextureID WorldPos Pickups ...
r1 msh rmstart tex rmstart 0, 0 NULL ...
r2 msh rmtrap tex rmtrap -20,10 k1 ...
r3 msh rm tex rm -10,20 k2,p1,a1 ...
r4 msh rm tex rm -30,20 k3,p2 ...
r5 msh rmtrap tex rmtrap 20,10 NULL ...
... DoorsTo Locked IsStart IsEnd
... NULL r2,r3 r3 with k1 true WorldPos(1,1) false
... 10HP r1,r4 r4 with k2 false false
... NULL r1,r2,r5 r5 with k3 false false
... NULL r2 false false
... 25HP NULL false true

Table 2.3: Initial table created by converting CreateRoom
and other calls.

Once we have taken the construction script and gener-
ated these first tables, we find the tables contain a lot of
NULLs. The NULLs in the rows replace the optional content
of the objects. If an object instance doesn’t have a certain
attribute then we replace those features with NULLs. There
are also elements which contain more than one item of data.
Having multiple doors per room is tricky to handle in this

36 CHAPTER 2. RELATIONAL DATABASES

table. How would you figure out what doors it had? The
same goes for whether the door is locked, and whether there
are any pickups. The first stage in normalising is going to
be reducing the number of elements in each cell to 1, and
increasing it to 1 where it’s currently NULL.

2.4 Normalisation

Back when SQL was first created there were only three well-
defined stages of data normalisation. There are many more
now, including six numbered normal forms. To get the most
out of a database, it is important to know most of them, or
at least get a feel for why they exist. They teach you about
data dependency and can hint at reinterpretations of your
data layout. For game structures, BCNF (Boyce-Codd nor-
mal form is explained later) is probably as far as you nor-
mally would need to take your methodical process. Beyond
that, you might wish to normalise your data for hot/cold ac-
cess patterns, but that kind of normalisation is not part of
the standard literature on database normalisation. If you’re
interested in more than this book covers on the subject, a
very good read, and one which introduces the phrase “The
key, the whole key, and nothing but the key.” is the article
A Simple Guide to Five Normal Forms in Relational Database
Theory[?] by William Kent.

If a table is in first normal form, then every cell contains
one and only one atomic value. That is, no arrays of values,
and no NULL entries. First normal form also requires every
row be distinct. For those unaware of what a primary key is,
we shall discuss that first.

2.4. NORMALISATION 37

2.4.1 Primary keys

All tables are made up of rows and columns. In a database,
each row must be unique. This constraint has important
consequences. When you have normalised your data, it be-
comes clear why duplicate rows don’t make sense, but for
now, from a computer programming point of view, consider
tables to be more like sets, where the whole row is the set
value. This is very close to reality, as sets are also not or-
dered, and a database table is not ordered either. There is
always some differentiation between rows, even if a database
management system (DBMS) has to rely on hidden row ID
values. It is better to not rely on this as databases work more
efficiently when the way in which they are used matches
their design. All tables need a key. The key is often used to
order the sorting of the table in physical media, to help op-
timise queries. For this reason, the key needs to be unique,
but as small as possible. You can think of the key as the
key in a map or dictionary. Because of the uniqueness rule,
every table has an implicit key because the table can use the
combination of all the columns at once to identify each row
uniquely. That is, the key, or the unique lookup, which is
the primary key for a table, can be defined as the totality of
the whole row. If the row is unique, then the primary key is
unique. Normally, we try to avoid using the whole row as the
primary key, but sometimes, it’s actually our only choice. We
will come across examples of that later.

For example, in the mesh table, the combination of
meshID and filename is guaranteed to be unique. How-
ever, currently it’s only guaranteed to be unique because
we have presumed that the meshID is unique. If it was the
same mesh, loaded from the same file, it could still have a
different meshID. The same can be said for the textureID
and filename in the textures table. From the table 2.2 it’s
possible to see how we could use the type, mesh, texture,
tint and animation to uniquely define each Pickup prototype.

Now consider rooms. If you use all the columns other

38 CHAPTER 2. RELATIONAL DATABASES

than the RoomID of the room table, you will find the combi-
nation can be used to uniquely define the room. If you con-
sider an alternative, where a row had the same combination
of values making up the room, it would in fact be describing
the same room. From this, it can be claimed that the Roo-
mID is being used as an alias for the rest of the data. We have
stuck the RoomID in the table, but where did it come from?
To start with, it came from the setup script. The script had
a RoomID, but we didn’t need it at that stage. We needed it
for the destination of the doors. In another situation, where
nothing connected logically to the room, we would not need
a RoomID as we would not need an alias to it.

A primary key must be unique. RoomID is an example of
a primary key because it uniquely describes the room. It is
an alias in this sense as it contains no data in and of itself,
but merely acts as a handle. In some cases the primary key
is information too, which again, we will meet later.

As a bit of an aside, the idea that a row in a database
is also the key can be a core concept worth spending time
thinking about. If a database table is a set, when you in-
sert a record, you’re actually just asking that one particular
combination of data is being recorded as existing. It is as if
a database table is a very sparse set from an extremely large
domain of possible values. This can be useful because you
may notice that under some circumstances, the set of possi-
ble values isn’t very large, and your table can be more easily
defined as a bit set. As an example, consider a table which
lists the players in an MMO that are online right now. For
an MMO that shards its servers, there can be limits in the
early thousands for the number of unique players on each
server. In that case, it may be easier to store the currently
online players as a bit set. If there are at most 10,000 players
online, and only 1000 players online at any one time, then
the bitset representation would take up 1.25kb of memory,
whereas storing the online players as a list of IDs, would re-
quire at least 2kb of data if their IDs were shrunk to shorts,
or 4kb if they had 32bit IDs to keep them unique across

2.4. NORMALISATION 39

multiple servers. The other benefit in this case is the perfor-
mance of queries into the data. To quickly access the ID in
the list, you need it to remain sorted. The best case then is
O(log n). In the bitset variant, it’s O(1).

Going back to the asset table, an important and useful
detail when we talk about the meshID and mesh filename is
that even though there could be two different meshIDs point-
ing at the same file, most programmers would intuitively un-
derstand that a single meshID was unlikely to point at two
different mesh files. Because of this asymmetry, you can
deduce, the column that seems more likely to be unique will
also be the column you can use as the primary key. We’ll
choose the meshID as it is easier to manipulate and is un-
likely to have more than one meaning or usage, but remem-
ber, we could have chosen the filename and gone without the
meshID altogether.

If we settle on TextureID, PickupID, and RoomID as the
primary keys for those tables, we can then look at continuing
on to first normal form. We’re using t1, m2, r3, etc. to show
typesafe ID values, but in reality, these can all be simple
integers. The idea here is to remain readable, but it also
shows that each type can have unique IDs for that type, but
have common IDs with another. For example, a room may
have an integer ID value of 0, but so may a texture. It can
be beneficial to have IDs which are unique across types, as
that can help debugging, and using the top few bits in that
case can be helpful. If you’re unlikely to have more than a
million entities per class of entity, then you have enough bits
to handle over a thousand distinct classes.

2.4.2 1st Normal Form

First normal form can be described as making sure the ta-
bles are not sparse. We require that there be no NULL point-
ers and that there be no arrays of data in each element of
data. This can be performed as a process of moving the re-

40 CHAPTER 2. RELATIONAL DATABASES

peats and all the optional content to other tables. Anywhere
there is a NULL, it implies optional content. Our first fix is
going to be the Pickups table, it has optional ColourTint and
Animation elements. We invent a new table PickupTint, and
use the primary key of the Pickup as the primary key of the
new table. We also invent a new table PickupAnim. Table
2.4 shows the result of the transformation, and note we no
longer have any NULL entries.

Pickups
PickupID MeshID TextureID PickupType
k1 msh key tex key KEY
k2 msh key tex key KEY
k3 msh key tex key KEY
p1 msh mpot tex pot POTION
p2 msh mpot tex pot POTION
a1 msh marm tex arm ARMOUR

PickupTints
PickupID ColourTint
k1 Copper
k2 Silver
k3 Gold
p1 Green
p2 Purple

PickupAnims
PickupID Anim
k1 anim keybob
k2 anim keybob
k3 anim keybob

Table 2.4: Pickups in 1NF

Two things become evident at this point, firstly that nor-
malisation appears to create more tables and fewer columns
in each table, secondly that there are only rows for things
which matter. The former is worrisome, as it means more
memory usage. The latter is interesting as when using an
object-oriented approach, we allow objects to optionally have
attributes. Optional attributes cause us to check they are
not NULL before continuing. If we store data like this, then
we know everything is not NULL. Moving away from having
to do a null check at all will make your code more concise,

2.4. NORMALISATION 41

and you have less state to consider when trying to reason
about your systems.

Let’s move onto the Rooms table. In there we saw single
elements that contained multiple atomic values. We need
to remove all elements from this table that do not conform
to the rules of first normal form. First, we remove reference
to the pickups, as they had various quantities of elements,
from none to many. Then we must consider the traps, as
even though there was only ever one trap, there wasn’t al-
ways a trap. Finally, we must strip out the doors, as even
though every room has a door, they often had more than
one. Remember that the rule is one and only one entry in
every meeting of row and column. In table 2.5 it shows how
we only keep columns that are in a one to one relationship
with the RoomID.

Rooms
RoomID MeshID TextureID WorldPos IsStart IsExit
r1 msh rmstart tex rmstart 0,0 true false
r2 msh rmtrap tex rmtrap -20,0 false false
r3 msh rm tex rm -10,20 false false
r4 msh rm tex rm -30,20 false false
r5 msh rmtrap tex rmtrap 20,10 false true

Table 2.5: Rooms table now in 1NF

Now we will make new tables for Pickups, Doors, and
Traps. In table 2.6 we see many decisions made to satisfy
the first normal form. We have split out the array like ele-
ments into separate rows. Note the use of multiple rows to
specify the numerous pickups all in the same room. We see
that doors now need two tables. The first table to identify
where the doors are, and where they lead. The second ta-
ble seems to do the same, but doesn’t cover all doors, only
the ones that are locked. What’s actually happening here is
a need to identify doors by their primary key in the locked
doors table. If you look at the Doors table, you can immedi-
ately tell that neither column is a candidate for the primary
key, as neither contain only unique values. What is unique
though is the combination of values, so the primary key is
made up of both columns. In the table LockedDoors, From-

42 CHAPTER 2. RELATIONAL DATABASES

Room and ToRoom are being used as a lookup into the Doors
table. This is often called a foreign key, meaning that there
exists a table for which these columns directly map to that
table’s primary key. In this case, the primary key is made up
of two columns, so the LockedDoors table has a large foreign
key and a small bit of extra detail about that entry in the
foreign table.

PickupInstances
RoomID PickupID
r2 k1
r3 k2
r3 a1
r3 p1
r4 k3
r4 p2

Doors
FromRoom ToRoom
r1 r2
r1 r3
r2 r1
r2 r4
r3 r1
r3 r2
r3 r5
r4 r2

LockedDoors
FromRoom ToRoom LockedWith
r1 r3 k1
r2 r4 k2
r3 r5 k3

Traps
RoomID Trapped
r2 10hp
r5 25hp

Table 2.6: Additional tables to support 1NF rooms

Laying out the data in this way takes less space in larger
projects as the number of NULL entries or arrays would have
only increased with increased complexity of the level file. By
laying out the data this way, we can add new features with-
out having to revisit the original objects. For example, if we

2.4. NORMALISATION 43

wanted to add monsters, normally we would not only have
to add a new object for the monsters, but also add them to
the room objects. In this format, all we need to do is add a
new table such as in table 2.7.

Monsters
MonsterID Attack HitPoints StartRoom
M1 2 5 r3
M2 2 5 r4

Table 2.7: Adding monsters

And now we have information about the monster and
what room it starts in without touching any of the original
level data.

2.4.3 2nd Normal Form

Second normal form is about trying to pull out columns that
don’t depend on only a part of the primary key. This can be
caused by having a table that requires a compound primary
key, and some attributes of the row only being dependent
on part of that compound key. An example might be where
you have weapons defined by quality and type, and the table
looks like that in table 2.8, what you can see is that the
primary key must be compound, as there are no columns
with unique values here.

Weapons
WeaponType WeaponQuality WeaponDamage WeaponDamageType
Sword Rusty 2d4 Slashing
Sword Average 2d6 Slashing
Sword Masterwork 2d8 Slashing
Lance Average 2d6 Piercing
Lance Masterwork 3d6 Piercing
Hammer Rusty 2d4 Crushing
Hammer Average 2d4+4 Crushing

Table 2.8: Weapons in 1NF

44 CHAPTER 2. RELATIONAL DATABASES

It makes sense for us looking at the table that the primary
key should be the compound of WeaponType and Weapon-
Quality, as it’s a fairly obvious move for us to want to look
up damage amount and damage type values based on what
weapon we’re using. It’s also possible to notice that the
DamageType does not depend on the WeaponQuality, and
in fact only depends on the WeaponType. That’s what we
mean about depending on part of the key. Even though each
weapon is defined in 1NF, the type of damage being dealt
currently relies on too little of the primary key to allow this
table to remain in 2NF. We split the table out in table 2.9
to remove the column that only relies on WeaponType. If we
found a weapon that changed DamageType based on quality,
then we would put the table back the way it was. An example
might be the badly damaged morningstar, which no longer
does piercing damage, but only bludgeons.

Weapons
WeaponType WeaponQuality WeaponDamage
Sword Rusty 2d4
Sword Average 2d6
Sword Masterwork 2d8
Lance Average 2d6
Lance Masterwork 3d6
Hammer Rusty 2d4
Hammer Average 2d4+4

WeaponDamageTypes
WeaponType WeaponDamageType
Sword Slashing
Lance Piercing
Hammer Crushing

Table 2.9: Weapons in 2NF

When considering second normal form for our level data,
it’s worth understanding some shortcuts we made in mov-
ing to first normal form. Firstly, we didn’t necessarily need
to move to having a PickupID, but instead could have refer-
enced the pickup prototype by PickupType and TintColour,
but that was cumbersome, and would have introduced a
NULL as a requirement as the armour doesn’t have a tint.

2.4. NORMALISATION 45

Table 2.10 shows how this may have looked, but the compli-
cations with making this connect to the rooms was the de-
ciding factor for introducing a PickupID. Without the pickup
ID, the only way to put the pickups in rooms was to have
two tables. One table for pickups with tints, and another
for pickups without tints. This is not absurd, but it doesn’t
seem clean in this particular situation. There will be cases
where this would be the right approach.

Pickups
MeshID TextureID PickupType ColourTint
mkey tkey KEY Copper
mkey tkey KEY Silver
mkey tkey KEY Gold
mpot tpot POTION Green
mpot tpot POTION Purple
marm tarm ARMOUR NULL

Normalising to 1NF:

Pickups 1NF
PickupType MeshID TextureID
KEY mkey tkey
POTION mpot tpot
ARMOUR marm tarm

TintedPickups 1NF
PickupType ColourTint
KEY Copper
KEY Silver
KEY Gold
POTION Green
POTION Purple

Table 2.10: An alternative 0NF and 1NF for Pickups

If we now revisit the Pickup table from before, with the
knowledge that the PickupID is an alias for the combina-
tion of PickupType and ColourTint, then we can apply the
same transform we see when moving to 1NF in the alterna-
tive form. That is, of moving MeshID and TextureID to their
own table, and depending only on PickupType, not the com-
pound key of PickupType and ColourTint.

In table 2.11, the assets elements now rely on the whole

46 CHAPTER 2. RELATIONAL DATABASES

of their compound key, not just part of it.

Pickups
PickupID PickupType
k1 KEY
k2 KEY
k3 KEY
p1 POTION
p2 POTION
a1 ARMOUR

PickupTints
PickupID ColourTint
k1 Copper
k2 Silver
k3 Gold
p1 Green
p2 Purple

PickupAssets
PickupType MeshID TextureID
KEY msh key tex key
POTION msh pot tex pot
ARMOUR msh arm tex arm

PickupAnims
PickupType AnimID
KEY key bob

Table 2.11: Pickups in 2NF

We can’t apply the same normalisation of table data to
the Room table. The Room table’s RoomID is an alias for
the whole row, possibly, or just the WorldPos, but in both
cases, it’s possible to see a correlation between the MeshID,
TextureID, and the value of IsStart. The problem is that it
also relies on the existence of entries in an external table.
If we take the table as it is, the MeshID and TextureID do
not directly rely on anything other than the RoomID in this
form.

2.4. NORMALISATION 47

2.4.4 3rd Normal Form

When considering further normalisation, we first have to re-
move any transitive dependencies. By this we mean any de-
pendencies on the primary key only via another column in
the row. We can do a quick scan of the current tables and
see all resources references refer to pairs of MeshID and Tex-
tureID values. Anything that uses a MeshID will use the
matching TextureID. This means we can pull out one or the
other from all the tables that use them, and look them up
via a table of pairs. We shall arbitrarily choose to use the
TextureID as the main lookup, and slim down to one table
for meshes and textures.

TexturesAndMeshes
TextureID TextureName MeshName
tex room "roomtexture" "roommesh"

tex roomstart "roomtexturestart" "roommeshstart"

tex roomtrap "roomtexturetrapped" "roommeshtrapped"

tex key "keytexture" "keymesh"

tex pot "potiontexture" "potionmesh"

tex arm "armourtexture" "armourmesh"

Table 2.12: Assets in 3NF

2.4.5 Boyce-Codd Normal Form

The assets used for a room are based on whether it is
trapped, or it’s the starting room. This is a functional de-
pendency, not a direct one, so we have to introduce a new
column to describe that aspect, and it’s going to require
generating intermediate data to drive the value query, but
it makes real the lack of direct link between the room and
the assets. The rooms can be trapped, and can be start-
ing rooms, and the assets connected to the room depend on
those attributes, not the room itself. This is why Boyce-Codd
Normal Form, or BCNF, can be thought of as the functionally
dependent normalisation stage.

48 CHAPTER 2. RELATIONAL DATABASES

Rooms
RoomID WorldPos IsStart IsExit
r1 0,0 true false
r2 -20,10 false false
r3 -10,20 false false
r4 -30,20 false false
r5 20,10 false true

Rooms
IsStart HasTrap TextureID
true false tex rmstart
false false tex rm
false true tex rmtrap

Table 2.13: Rooms table now in BCNF

2.4.6 Domain Key / Knowledge

Domain key normal form is normally thought of as the last
normal form, but for developing efficient data structures, it’s
one of the things best studied early and often. The term do-
main knowledge is preferable when writing code as it makes
more immediate sense and encourages use outside of keys
and tables. Domain knowledge is the idea that data depends
on other data, but only given information about the domain
in which it resides. Domain knowledge can be as simple as
awareness of a colloquialism for something, such as know-
ing that a certain number of degrees Celsius or Fahrenheit is
hot, or whether some SI unit relates to a man-made concept
such as 100m/s being rather quick.

An example of where domain knowledge can help with
catching issues can be with putting human interpreta-
tions of values into asserts. Consider an assert for catching
physics systems blowups. What is a valid expected range of
values for acceleration? Multiply it by ten, and you have a
check for when everything goes a bit crazy.

Some applications avoid the traditional inaccurate and
erratic countdown timer, and resort to human-readable
forms such as in a few minutes or time to grab a coffee,
however domain knowledge isn’t just about presenting a hu-

2.4. NORMALISATION 49

man interpretation of data. For example things such as the
speed of sound, of light, speed limits and average speed of
traffic on a given road network, psychoacoustic properties,
the boiling point of water, and how long it takes a human
to react to any given visual input. All these facts may be
useful in some way, but can only be put into an application
if the programmer adds it specifically as procedural domain
knowledge or as an attribute of a specific instance.

Looking at our level data, one thing we can guess at is
the asset filenames based on the basic name. The textures
and meshes share a common format, so moving away from
storing the full filenames could give us a Domain Knowledge
normalised form.

AssetLookupTable
AssetID StubbedName
ast room "room%s"

ast roomstart "room%sstart"

ast roomtrap "room%strapped"

ast key "key%s"

ast pot "potion%s"

ast arm "armour%s"

Table 2.14: Assets in DKNF

Domain knowledge is useful because it allows us to lose
some otherwise unnecessarily stored data. It is a compiler’s
job to analyse the produced output of code (the abstract syn-
tax tree) to then provide itself with data upon which it can
infer and use its domain knowledge about what operations
can be omitted, reordered, or transformed to produce faster
or cheaper assembly. It’s our job to do the same for ele-
ments the compiler can’t know about, such as the chance
that someone in the middle of a fight is going to be able to
hear a coin drop in another room.

Domain knowledge is what leads to inventions such as
JPEG and MP3. Thinking about what is possible, what is
possible to perceive, and what can possibly be affected by
user actions, can reduce the amount of work done by an
application, and can reduce its complexity. When you jump

50 CHAPTER 2. RELATIONAL DATABASES

in a game with physics, we don’t move the world down by
fractions of a nanometre to represent the opposite reaction
caused by the forces applied.

2.4.7 Reflections

What we see here as we normalise our data is a tendency
to split data by dependency. Looking at many third party
engines and APIs, you can see some parallels with the re-
sults of these normalisations. It’s unlikely that the people
involved in the design and evolution of these engines took
their data and applied database normalisation techniques,
but sometimes the separations between object and compo-
nents of objects can be obvious enough that you don’t need a
formal technique in order to realise some positive structural
changes.

In some games, the entity object is not just an object that
can be anything, but is instead a specific subset of the types
of entity involved in the game. For example, in one game
there might be a class for the player character, and one for
each major type of enemy character, and another for vehi-
cles. The player may have different attributes to other enti-
ties, such as lacking AI controls, or having player controls,
or having regenerating health, or having ammo. This object-
oriented approach puts a line, invisible to the user, but in-
trusive to the developer, between classes of object and their
instances. It is intrusive because when classes touch, they
have to adapt to each other. When they don’t reside in the
same hierarchy, they have to work through abstraction lay-
ers to message each other. The amount of code required to
bridge these gaps can be small, but they always introduce
complexity.

When developing software, this usually manifests as time
spent writing out templated code that can operate on multi-
ple classes rather than refactoring the classes involved into
more discrete components. This could be considered wasted

2.5. OPERATIONS 51

time as the likelihood of other operations needing to operate
on all the objects is greater than zero, and the effort to refac-
tor into components is usually similar to the effort to create
a working templated operation.

Without classes to define boundaries, the table-based ap-
proach levels the playing field for data to be manipulated
together. In all cases on our journey through normalising
the level data, we have made it so changes to the design re-
quire fewer changes to the data, and made it so data changes
are less likely to cause the state to become inconsistent. In
many cases, it would seem we have added complexity when
it wasn’t necessary, and that’s up to experimentation and
experience to help you decide how far to go.

2.5 Operations

When you use objects, you call methods on them, so how
do you unlock a door in this table-based approach? Actions
are always going to be insert, delete, or updates. These were
clearly specified in Edgar F. Codd’s works, and they are all
you need to manipulate a relational model.

In a real database, finding what mesh to load, or whether
a door is locked would normally require a join between ta-
bles. A real database would also attempt to optimise the join
by changing the sequence of operations until it had made the
smallest possible expected workload. We can do better than
that because we can take absolute charge of how we look at
and request data from our tables. To find out if a door is
locked, we don’t need to join tables, we know we can look up
into the locked doors table directly. Just because the data
is laid out like a database, doesn’t mean we have to use a
query language to access it.

When it comes to operations that change state, it’s best
to try to stick to the kind of operation you would normally

52 CHAPTER 2. RELATIONAL DATABASES

find in a DBMS, as doing unexpected operations brings un-
expected state complexity. For example, imagine you have a
table of doors that are open, and a table of doors that are
closed. Moving a door from one table might be considered
wasteful, so you may consider changing the representation
to a single table, but with all closed doors at one end, and
all open at the other. By having both tables represented
as a single table, and having the isClosed attribute defined
implicitly by a cut-off point in the array, such as in listing
2.2, leads to the table being somewhat ordered. This type
of memory optimisation comes at a price. Introducing order
into a table makes the whole table inherently less parallelis-
able to operations, so beware the additional complexity in-
troduced by making changes like this, and document them
well.

1 typedef std::pair <int ,int > Door;
2 typedef std::vector <Door > DoorVector
3 DoorVector gDoors;
4 int gDoors_firstClosedDoor = 0;
5
6 AddClosedDoor(Door d) {
7 gDoors.push_back ();
8 }
9 AddOpenDoor(Door d) {

10 gDoors.insert(gDoors.begin() + gDoors_firstClosedDoor , d);
11 gDoors_firstClosedDoor += 1;
12 }

Listing 2.2: Abusing the ordered nature of a vector

Unlocking a door can be a delete. A door is locked because
there is an entry in the LockedDoors table that matches the
Door you are interested in. Unlocking a door is a delete if
door matches, and you have the right key.

The player inventory would be a table with just PickupIDs.
This is the idea that ”the primary key is also the data” men-
tioned much earlier. If the player enters a room and picks up
a Pickup, then the entry matching the room is deleted while
the inventory is updated to include the new PickupID.

Databases have the concept of triggers, whereupon oper-
ations on a table can cause cascades of further operations.
In the case of picking up a key, we would want a trigger on
insert into the inventory that joined the new PickupID with

2.6. SUMMING UP 53

the LockedDoors table. For each matching row there, delete
it, and now the door is unlocked.

2.6 Summing up

At this point we can see it is perfectly reasonable to store any
highly complex data structures in a database format, even
game data with its high interconnectedness and rapid design
changing criteria.

Games have lots of state, and the relational model pro-
vides a strong structure to hold both static information, and
mutable state. The strong structure leads to similar so-
lutions to similar problems in practise, and similar solu-
tions have similar processing. You can expect algorithms
and techniques to be more reusable while working with ta-
bles, as the data layout is less surprising.

If you’re looking for a way to convert your interconnected
complicated objects into a simpler flatter memory layout, you
could do worse than approach the conversion with normali-
sation in mind.

A database approach to data storage has some other use-
ful side-effects. It provides an easier route to allowing old
executables to run off new data, and it allows new executa-
bles to more easily run with old data. This can be vital when
working with other people who might need to run an earlier
or later version. We saw that sometimes adding new features
required nothing more than adding a new table, or a new col-
umn to an existing table. That’s a non-intrusive modification
if you are using a database style of storage, but a significant
change if you’re adding a new member to a class.

54 CHAPTER 2. RELATIONAL DATABASES

2.7 Stream Processing

Now we realise that all the game data and game runtime can
be implemented in a database-like approach, we can also
see that all game data can be implemented as streams. Our
persistent storage is a database, our runtime data is in the
same format as it was on disk, what do we benefit from this?
Databases can be thought of as collections of rows, or col-
lections of columns, but it’s also possible to think about the
tables as sets. The set is the set of all possible permutations
of the attributes.

For most applications, using a bitset to represent a ta-
ble would be wasteful, as the set size quickly grows out of
scope of any hardware, but it can be interesting to note what
this means from a processing point of view. Processing a set,
transforming it into another set, can be thought of as travers-
ing the set and producing the output set, but the interesting
attribute of a set is that it is unordered. An unordered list
can be trivially parallel processed. There are massive ben-
efits to be had by taking advantage of this trivialisation of
parallelism wherever possible, and we normally cannot get
near this because of the data layout of the object-oriented
approaches.

Coming at this from another angle, graphics cards ven-
dors have been pushing in this direction for many years, and
we now need to think in this way for game logic too. We
can process lots of data quickly as long as we utilise stream
processing or set processing as much as possible and use
random access processing as little as possible. Stream pro-
cessing in this case means to process data without writing to
variables external to the process. This means not allowing
things like global accumulators, or accessing global mem-
ory not set as a source for the process. This ensures the
processes or transforms are trivially parallelisable.

When you prepare a primitive render for a graphics card,
you set up constants such as the transform matrix, the tex-

2.8. WHY DOES DATABASE TECHNOLOGY MATTER? 55

ture binding, any lighting values, or which shader you want
to run. When you come to run the shader, each vertex and
pixel may have its own scratchpad of local variables, but
they never write to globals or refer to a global scratchpad.
The concept of shared memory in general purpose GPU code,
such as CUDA and OpenCL, allows the use of a kind of man-
aged cache. None of the GPGPU techniques offer access to
global memory, and thus maintain a clear separation of do-
mains and continue to guarantee no side-effects caused by
any kernels being run outside of their own sandboxed shared
memory. By enforcing this lack of side-effects, we can guar-
antee trivial parallelism because the order of operations are
assured to be irrelevant. If a shader was allowed to write to
globals, there would be locking, or it would become an inher-
ently serial operation. Neither of these are good for massive
core count devices like graphics cards, so that has been a
self imposed limit and an important factor in their design.
Adding shared memory to the mix starts to inject some po-
tential locking into the process, and hence is explicitly only
used when writing compute shaders.

Doing all processing this way, without globals / global
scratchpads, gives you the rigidity of intention to highly par-
allelise your processing and make it easier to think about
the system, inspect it, debug it, and extend it or interrupt it
to hook in new features. If you know the order doesn’t mat-
ter, it’s very easy to rerun any tests or transforms that have
caused bad state.

2.8 Why does database technology mat-
ter?

As mentioned at the start of the chapter, the relational model
is currently a very good fit for developing non-sparse data
layouts that are manipulable with very little complicated
state management required once the tables have been de-

56 CHAPTER 2. RELATIONAL DATABASES

signed. However, the only constant is change. That which
is current, regularly becomes the old way, and for widely
scaled systems, the relational model no longer provides all
features required.

After the emergence of NoSQL solutions for handling even
larger workloads, and various large companies’ work on cre-
ating solutions to distribute computing power, there have
been advances in techniques to process enormous data-sets.
There have been advances in how to keep databases current,
distributed, and consistent (within tolerance). Databases
now regularly include NULL entries, to the point where there
are far more NULL entries than there are values, and these
highly sparse databases need a different solution for pro-
cessing. Many large calculations and processes now run
via a technique called map-reduce, and distributing work-
loads has become commonplace enough that people have to
be reminded they don’t always need a cluster to add up some
numbers.

What’s become clear over the last decade is that most of
the high-level data processing techniques which are prov-
ing to be useful are a combination of hardware-aware data
manipulation layers being used by functional programming
style high-level algorithms. As the hardware in your PC be-
comes more and more like the internet itself, these tech-
niques will begin to dominate on personal hardware, whether
it be personal computers, phones, or whatever the next gen-
eration brings. Data-oriented design was inspired by a real-
isation that the hardware had moved on to the point where
the techniques we used to use to defend against latency from
CPU to hard drive, now apply to memory. In the future, if we
raise processing power by the utilisation of hoards of iso-
lated unreliable computation units, then the techniques for
distributing computing across servers that we’re developing
in this era, will apply to the desktops of the next.

Chapter 3

Existential Processing

If you saw there weren’t any apples in stock, would you still
haggle over their price?

Existential processing attempts to provide a way to re-
move unnecessary querying about whether or not to process
your data. In most software, there are checks for NULL and
queries to make sure the objects are in a valid state before
work is started. What if you could always guarantee your
pointers were not null? What if you were able to trust that
your objects were in a valid state, and should always be pro-
cessed?

In this chapter, a dynamic runtime polymorphism tech-
nique is shown that can work with the data-oriented de-
sign methodology. It is not the only way to implement data-
oriented design friendly runtime polymorphism, but was the
first solution discovered by the author, and fits well with
other game development technologies, such as components
and compute shaders.

57

58 CHAPTER 3. EXISTENTIAL PROCESSING

3.1 Complexity

When studying software engineering you may find references
to cyclomatic complexity or conditional complexity. This is
a complexity metric providing a numeric representation of
the complexity of programs and is used in analysing large-
scale software projects. Cyclomatic complexity concerns it-
self only with flow control. The formula, summarised for our
purposes, is one (1) plus the number of conditionals present
in the system being analysed. That means for any system
it starts at one, and for each if, while, for, and do-while, we
add one. We also add one per path in a switch statement
excluding the default case if present.

Under the hood, if we consider how a virtual call works,
that is, a lookup in a function pointer table followed by a
branch into the class method, we can see that a virtual call
is effectively just as complex as a switch statement. Count-
ing the flow control statements is more difficult in a virtual
call because to know the complexity value, you have to know
the number of possible methods that can fulfil the request.
In the case of a virtual call, you have to count the number
of overrides to a base virtual call. If the base is pure-virtual,
then you may subtract one from the complexity. However, if
you don’t have access to all the code that is running, which
can be possible in the case of dynamically loaded libraries,
then the number of different potential code paths increases
by an unknown amount. This hidden or obscured complex-
ity is necessary to allow third party libraries to interface with
the core process, but requires a level of trust that implies
no single part of the process is ever going to be thoroughly
tested.

This kind of complexity is commonly called control flow
complexity. There is another form of complexity inherent in
software, and that is the complexity of state. In the paper
Out of the Tar Pit [?], it’s concluded that the aspect of software
which causes the most complexity is state. The paper con-
tinues and presents a solution which attempts to minimise

3.1. COMPLEXITY 59

what it calls accidental state, that is, state which is required
by the software to do its job, but not directly required by the
problem being solved. The solution also attempts to abolish
any state introduced merely to support a programming style.

We use flow control to change state, and state changes
what is executed in our programs. In most cases flow con-
trol is put in for one of two reasons: to solve the problem
presented (which is equivalent to the essential state in Out
of the Tar Pit), and to help with the implementation of the
solution (which is equivalent to the accidental state).

Essential control is when we need to implement the de-
sign, a gameplay feature which has to happen when some
conditions are met, such as jumping when the jump but-
ton is pressed or autosaving at a save checkpoint when the
savedata is dirty, or a timer has run out.

Accidental control is non-essential to the program from
the point of view of the person using it, but could be founda-
tion work, making it critical for successful program creation.
This type of control complexity is itself generally split into two
forms. The first form is structural, such as to support a pro-
gramming paradigm, to provide performance improvements,
or to drive an algorithm. The second form is defensive pro-
gramming or developer helpers such as reference counting
or garbage collection. These techniques increase complexity
where functions operating on the data aren’t sure the data
exists, or is making sure bounds are observed. In practice,
you will find this kind of control complexity when using con-
tainers and other structures, control flow is going to be in
the form of bounds checks and ensuring data has not gone
out of scope. Garbage collection adds complexity. In many
languages, there are few guarantees about how and when it
will happen. This also means it can be hard to reason about
object lifetimes. Because of a tendency to ignore memory
allocations early in development when working with these
languages, it can be very hard to fix memory leaks closer to
shipping dates. Garbage collection in unmanaged languages

60 CHAPTER 3. EXISTENTIAL PROCESSING

is easier to handle, as reference counts can more easily be
interrogated, but also due to the fact that unmanaged lan-
guages generally allocate less often in the first place.

3.2 Debugging

What classes of issues do we suffer with high complexity
programs? Analysing the complexity of a system helps us
understand how difficult it is to test, and in turn, how hard
it is to debug. Some issues can be classified as being in an
unexpected state, and then having no way forward. Others
can be classified as having bad state, and then exhibiting
unexpected behaviour due to reacting to this invalid data.
Yet others can be classified as performance problems, not
just correctness, and these issues, though somewhat disre-
garded by a large amount of academic literature, are costly
in practice and usually come from complex dependencies of
state.

For example, the complexity caused by performance tech-
niques such as caching, are issues of complexity of state.
The CPU cache is in a state, and not being aware of it, and
not working with the expected state in mind, leads to issues
of poor or inconsistent performance.

Much of the time, the difficulty we have in debugging
comes from not fully observing all the flow control points,
assuming one route has been taken when it hasn’t. When
programs do what they are told, and not what we mean, they
will have entered into a state we had not expected or prepared
for.

With runtime polymorphism using virtual calls, the like-
lihood of that happening can dramatically increase as we
cannot be sure we know all the different ways the code can
branch until we either litter the code with logging, or step
through in a debugger to see where it goes at run-time.

3.3. WHY USE AN IF 61

3.3 Why use an if

In real-world cases of game development, the most common
use of an explicit flow control statement would appear to be
in the non-essential set. Where defensive programming is
being practiced, many of the flow control statements are just
to stop crashes. There are fail-safes for out of bounds ac-
cesses, protection from pointers being NULL, and defenses
against other exceptional cases that would bring the pro-
gram to a halt. It’s pleasing to note, GitHub contains plenty
of high quality C++ source-code that bucks this trend, prefer-
ring to work with reference types, or with value types where
possible. In game development, another common form of
flow control is looping. Though these are numerous, most
compilers can spot them, and have good optimisations for
these and do a very good job of removing condition checks
that aren’t necessary. The final inessential but common flow
control comes from polymorphic calls, which can be helpful
in implementing some of the gameplay logic, but mostly are
there to entertain the do-more-with-less-code development
model partially enforced in the object-oriented approach to
writing games.

Essential game design originating flow control doesn’t ap-
pear very often in profiles as causes of branching, as all the
supporting code is run far more frequently. This can lead to
an underappreciation of the effect each conditional has on
the performance of the software. Code that does use a con-
ditional to implement AI or handle character movement, or
decide on when to load a level, will be calling down into sys-
tems which are full of loops and tree traversals, or bounds
checks on arrays they are accessing in order to return the
data upon which the game is going to produce the boolean
value to finally drive the side of the if to which it will fall
through. That is, when the rest of your code-base is slow,
it’s hard to validate writing fast code for any one task. It’s
hard to tell what additional costs you’re adding on.

If we decide the elimination of control flow is a goal wor-

62 CHAPTER 3. EXISTENTIAL PROCESSING

thy of consideration, then we must begin to understand what
control flow operations we can eliminate. If we begin our at-
tempt to eliminate control flow by looking at defensive pro-
gramming, we can try to keep our working set of data as a
collections of arrays. This way we can guarantee none of our
data will be NULL. That one step alone may eliminate many
of our flow control statements. It won’t get rid of loops, but
as long as they are loops over data running a pure func-
tional style transform, then there are no side-effects to worry
about, and it will be easier to reason about.1

The inherent flow control in a virtual call is avoidable,
as it is a fact that many programs were written in a non-
object-oriented style. Without virtuals, we can rely on switch
statements. Without those, we can rely on function pointer
tables. Without those, we can have a long sequence of ifs.
There are many ways to implement runtime polymorphism.
It is also possible to maintain that if you don’t have an explicit
type, you don’t need to switch on it, so if you can eradicate
the object-oriented approach to solving the problem, those
flow control statements go away completely.

When we get to the control flow in gameplay logic, we find
there is no simple way to eradicate it. This is not a terrible
thing to worry about, as the gameplay logic is as close to
essential complexity as we can get when it comes to game
development.

Reducing the number of conditionals, and thus reducing
the cyclomatic complexity on such a scale is a benefit which
cannot be overlooked, but it is one that comes with a cost.
The reason we are able to get rid of the check for NULL is
that we will have our data in a format that doesn’t allow for
NULL at all. This inflexibility will prove to be a benefit, but
it requires a new way of processing our entities.

Where once we would have an object instance for an area

1Sean Parent’s talks on C++ seasoning are worth watching. They talk
practically about simplification and elimination of unnecessary loops and
structure.

3.3. WHY USE AN IF 63

in a game, and we would interrogate it for exits that take us to
other areas, now we look into a structure that only contains
links between areas, and filter by the area we are in. This
reversal of ownership can be a massive benefit in debugging,
but can sometimes appear backward when all you want to
do is find out what exits are available to get out of an area.

If you’ve ever worked with shopping lists or to-do lists,
you’ll know how much more efficient you can be when you
have a definite list of things to purchase or complete. It’s
very easy to make a list, and adding to it is easy as well. If
you’re going shopping, it’s very hard to think what might be
missing from your house in order to get what you need. If
you’re the type that tries to plan meals, then a list is nigh on
essential as you figure out ingredients and then tally up the
number of tins of tomatoes, or other ingredients you need to
last through all the meals you have planned. If you have a
to-do list and a calendar, you know who is coming and what
needs to be done to prepare for them. You know how many
extra mouths need feeding, how much food and drink you
need to buy, and how much laundry you need done to make
enough beds for the visitors.

To-do lists are great because you can set an end goal and
then add in subtasks that make a large and long distant
goal seem more doable. Adding in estimates can provide a
little urgency that is usually missing when the deadline is so
far away. Many companies use software to support tracking
of tasks, and this software often comes with features allow-
ing the producers to determine critical paths, expected de-
veloper hours required, and sometimes even the balance of
skills required to complete a project. Not using this kind of
software is often a sign that a company isn’t overly concerned
with efficiency, or waste. If you’re concerned about efficiency
and waste in your program, lists of tasks seem like a good
way to start analysing where the costs are coming from. If
you keep track of these lists by logging them, you can look
at the data and see the general shape of the processing your
software is performing. Without this, it can be difficult to

64 CHAPTER 3. EXISTENTIAL PROCESSING

tell where the real bottlenecks are, as it might not be the
processing that is the problem, but the requirement to pro-
cess data itself which has gotten out of hand.

When your program is running, if you don’t give it ho-
mogeneous lists to work with, but instead let it do whatever
comes up next, it will be inefficient and have irregular or
lumpy frame timings. Inefficiency of hardware utilisation
often comes from unpredictable processing. In the case of
large arrays of pointers to heterogeneous classes all being
called with an update() function, you can hit high amounts
of data dependency which leads to misses in both data and
instruction caches. See chapter 11 for more details on why.

Slowness also comes from not being able to see how much
work needs to be done, and therefore not being able to priori-
tise or scale the work to fit what is possible within the given
time-frame. Without a to-do list, and an ability to estimate
the amount of time each task will take, it is difficult to decide
the best course of action to take in order to reduce overhead
while maintaining feedback to the user.

Object-oriented programming works very well when there
are few patterns in the way the program runs. When either
the program is working with only a small amount of data, or
when the data is incredibly heterogeneous, to the point that
there are as many classes of things as there are things.

Irregular frame timings can often be blamed on not be-
ing able to act on distant goals ahead of time. If you, as a
developer, know you have to load the assets for a new island
when a player ventures into the seas around it, the stream-
ing system can be told to drag in any data necessary. This
could also be for a room and the rooms beyond. It could
be for a cave or dungeon when the player is within sight of
the entrance. We consider this kind of preemptive streaming
of data to be a special case and invent systems to provide
this level of forethought. Relying on humans, or even level-
designers, to link these together is prone to error. In many
cases, there are chains of dependencies that can be missed

3.3. WHY USE AN IF 65

without an automated check. The reason we cannot make
systems self-aware enough to preload themselves is that we
don’t have a common language to describe temporal depen-
dencies.

In many games, we stream things in with explicit triggers,
but there is often no such system for many of the other game
elements. It’s virtually unheard of for an AI to pathfind to
some goal because there might soon be a need to head that
way. The closest would be for the developer to pre-populate
a navigation map so coarse grain pathing can be completed
swiftly.

There’s also the problem of depth of preemptive work.
Consider the problem of a small room, built as a separate
asset, a waiting room with two doors near each other, both
leading to large, but different maps. When the player gets
near the door to the waiting room in map A, that little room
can be preemptively streamed in. However, in many engines,
map B won’t be streamed in, as the locality of map B to map
A is hidden behind the logical layer of the waiting room.

It’s also not commonplace to find a physics system doing
look ahead to see if a collision has happened in the future in
order to start doing further work. It might be possible to do
a more complex breakup simulation if it were more aware.

If you let your game generate to-do lists, shopping lists,
distant goals, and allow for preventative measures by forward-
thinking, then you can simplify your task as a coder into
prioritising goals and effects, or writing code that generates
priorities at runtime. You can start to think about how to
chain those dependencies to solve the waiting room problem.
You can begin to preempt all types of processing.

66 CHAPTER 3. EXISTENTIAL PROCESSING

3.4 Types of processing

Existential processing is related to to-do lists. When you
process every element in a homogeneous set of data, you
know you are processing every element the same way. You
are running the same instructions for every element in that
set. There is no definite requirement for the output in this
specification, however, it usually comes down to one of three
types of operation: a filter, a mutation, or an emission. A
mutation is a one to one manipulation of the data, it takes
incoming data and some constants that are set up before
the transform, and produces one and only one element for
each input element. A filter takes incoming data, again with
some constants set up before the transform, and produces
one element or zero elements for each input element. An
emission is a manipulation of the incoming data that can
produce multiple output elements. Just like the other two
transforms, an emission can use constants, but there is no
guaranteed size of the output table; it can produce anywhere
between zero and infinity elements.

A fourth, and final form, is not really a manipulation of
data, but is often part of a transform pipeline, and that is
the generator. A generator takes no input data, but merely
produces output based on the constants set up. When work-
ing with compute shaders, you might come across this as a
function that merely clears out an array to zero, one, or an
ascending sequence.

These categories can help you decide what data structure
you will use to store the elements in your arrays, and whether
you even need a structure, or you should instead pipe data
from one stage to another without it touching down on an
intermediate buffer.

Every CPU can efficiently handle running processing
kernels over homogeneous sets of data, that is, doing the
same operation over and over again over contiguous data.
When there is no global state, no accumulator, it is proven

3.4. TYPES OF PROCESSING 67

Transforms

Mutation in == out

Handles input data. Produces
one item of output for every item
of input.

Filter in >= out

Handles input data. Produces
up to one item of output for
every item of input.

Emission out =

{
0, in = 0

>= 0, otherwise

Handles input data. Produces
unknown amount of items per
item of input. With no input,
output is also empty.

Generation in = 0 ∧ out >= 0

Does not read data. Produces an
unknown amount of items just
by running.

Table 3.1: Types of transform normally encountered

to be parallelisable. Examples can be given from exist-
ing technologies such as map-reduce and simple compute
shaders, as to how to go about building real work applica-
tions within these restrictions. Stateless transforms also
commit no crimes that prevent them from being used within
distributed processing technologies. Erlang relies on these
guarantees of being side-effect free to enable not just thread
safe processing or interprocess safe processing, but dis-
tributed computing safe processing. Stateless transforms of
stateful data are highly robust and deeply parallelisable.

Within the processing of each element, that is for each
datum operated on by the transform kernel, it is fair to use
control flow. Almost all compilers should be able to reduce
simple local value branch instructions into a platform’s pre-
ferred branch-free representation, such as a CMOV, or select
function for a SIMD operation. When considering branches
inside transforms, it’s best to compare to existing implemen-
tations of stream processing such as graphics card shaders
or compute kernels.

In predication, flow control statements are not ignored,
but they are used instead as an indicator of how to merge two
results. When the flow control is not based on a constant,
a predicated if will generate code that will run both sides of

68 CHAPTER 3. EXISTENTIAL PROCESSING

the branch at the same time and discard one result based on
the value of the condition. It manages this by selecting one
of the results based on the condition. As mentioned before,
in many CPUs there is an intrinsic for this, but all CPUs can
use bit masking to effect this trick.

SIMD or single-instruction-multiple-data allows the par-
allel processing of data when the instructions are the same.
The data is different but local. When there are no condition-
als, SIMD operations are simple to implement on your trans-
forms. In MIMD, that is multiple instructions, multiple data,
every piece of data can be operated on by a different set of
instructions. Each piece of data can take a different path.
This is the simplest and most error-prone to code for because
it’s how most parallel programming is currently done. We
add a thread and process some more data with a separate
thread of execution. MIMD includes multi-core general pur-
pose CPUs. It often allows shared memory access and all
the synchronisation issues that come with it. It is by far the
easiest to get up and running, but it is also the most prone
to the kind of rare fatal error caused by complexity of state.
Because the order of operations become non-deterministic,
the number of different possible routes taken through the
code explode super-exponentially.

3.5 Don’t use booleans

When you study compression technology, one of the most
important aspects you have to understand is the difference
between data and information. There are many ways to
store information in systems, from literal strings that can be
parsed to declare something exists, right down to something
simple like a single bit flag to show that a thing might have
an attribute. Examples include the text that declares the
existence of a local variable in a scripting language, or the
bit field containing all the different collision types a physics
mesh will respond to. Sometimes we can store even less

3.5. DON’T USE BOOLEANS 69

information than a bit by using advanced algorithms such
as arithmetic encoding, or by utilising domain knowledge.
Domain knowledge normalisation applies in most game de-
velopment, but it is increasingly infrequently applied, as
many developers are falling foul to overzealous application
of quoting premature optimisation. As information is en-
coded in data, and the amount of information encoded can
be amplified by domain knowledge, it’s important that we be-
gin to see that the advice offered by compression techniques
is: what we are really encoding is probabilities.

If we take an example, a game where the entities have
health, regenerate after a while of not taking damage, can
die, can shoot each other, then let’s see what domain knowl-
edge can do to reduce processing.

We assume the following domain knowledge:

• If you have full health, then you don’t need to regener-
ate.

• Once you have been shot, it takes some time until you
begin regenerating.

• Once you are dead, you cannot regenerate.

• Once you are dead you have zero health.

1 struct Entity {
2 // information about the entity position
3 // ...
4 // now health data in the middle of the entity
5 float timeoflastdamage;
6 float health;
7 // ...
8 // other entity information
9 };

10 list <Entity > entities;

Listing 3.1: basic entity approach

1 void UpdateHealth(Entity *e) {
2 TimeType timeSinceLastShot = e->timeOfLastDamage - currentTime;
3 bool isHurt = e->health < MAX_HEALTH;
4 bool isDead = e->health <= 0;
5 bool regenCanStart = timeSinceLastShot >

TIME_BEFORE_REGENERATING;
6 // if alive , and hurt , and it’s been long enough
7 if(!isDead && isHurt && regenCanStart) {
8 e->health = min(MAX_HEALTH , e->health + tickTime * regenRate)

;

70 CHAPTER 3. EXISTENTIAL PROCESSING

9 }
10 }

Listing 3.2: simple health regen

If we have a list for the entities such as in listing 3.1, then
we see the normal problem of data potentially causing cache
line utilisation issues, but aside from that, we can see how
you might run an update function over the list, such as in
listing 3.2, which will run for every entity in the game, every
update.

We can make this better by looking at the flow control
statement. The function won’t run if health is at max. It
won’t run if the entity is dead. The regenerate function only
needs to run if it has been long enough since the last dam-
age dealt. All these things considered, regeneration isn’t the
common case. We should try to organise the data layout for
the common case.

1 struct Entity {
2 // information about the entity position
3 // ...
4 // other entity information
5 };
6 struct Entitydamage {
7 float timeoflastdamage;
8 float health;
9 }

10 list <Entity > entities;
11 map <EntityRef ,Entitydamage > entitydamages;

Listing 3.3: Existential processing style health

Let’s change the structures to those in listing 3.3 and then
we can run the update function over the health table rather
than the entities. This means we already know, as soon as
we are in this function, that the entity is not dead, and they
are hurt.

1 void UpdateHealth () {
2 for(edIter : entityDamages) {
3 EntityDamage &ed = edIter ->second;
4 if(ed.health <= 0) {
5 // if dead , insert the fact that this entity is dead
6 EntityRef entity = edIter ->first;
7 deadEntities.insert(entity);
8 // if dead , discard being damaged
9 discard(ed);

10 } else {
11 TimeType timeSinceLastShot = currentTime - ed.

timeOfLastShot;
12 bool regenCanStart = timeSinceLastShot >

TIME_BEFORE_REGENERATING;

3.5. DON’T USE BOOLEANS 71

13 if(regenCanStart)
14 ed->health =ed->health + tickTime * regenRate;
15 // if at max health or beyond , discard being damaged
16 if(ed->health >= MAX_HEALTH)
17 discard(ed);
18 }
19 }
20 }

Listing 3.4: every entity health regen

We only add a new entityhealth element when an entity
takes damage. If an entity takes damage when it already has
an entityhealth element, then it can update the health rather
than create a new row, also updating the time damage was
last dealt. If you want to find out someone’s health, then
you only need to look and see if they have an entityhealth
row, or if they have a row in deadEntities table. The rea-
son this works is, an entity has an implicit boolean hidden
in the row existing in the table. For the entityDamages ta-
ble, that implicit boolean is the isHurt variable from the first
function. For the deadEntities table, the boolean of isDead
is now implicit, and also implies a health value of 0, which
can reduce processing for many other systems. If you don’t
have to load a float and check it is less than 0, then you’re
saving a floating point comparison or conversion to boolean.

This eradication of booleans is nothing new, because ev-
ery time you have a pointer to something you introduce a
boolean of having a non-NULL value. It’s the fact that we
don’t want to check for NULL which pushes us towards find-
ing a different representation for the lack of existence of an
object to process.

Other similar cases include weapon reloading, oxygen lev-
els when swimming, anything which has a value that runs
out, has a maximum, or has a minimum. Even things like
driving speeds of cars. If they are traffic, then they will spend
most of their time driving at traffic speed not some speed they
need to calculate. If you have a group of people all heading
in the same direction, then someone joining the group can
be intercepting until they manage to, at which point they can
give up their independence, and become controlled by the

72 CHAPTER 3. EXISTENTIAL PROCESSING

group. There is more on this point in chapter 5.

By moving to keeping lists of attribute state, you can
introduce even more performance improvements. The first
thing you can do for attributes that are linked to time is to
put them in a sorted list, sorted by time of when they should
be acted upon. You could put the regeneration times in a
sorted list and pop entityDamage elements until you reach
one that can’t be moved to the active list, then run through
all the active list in one go, knowing they have some damage,
aren’t dead, and can regen as it’s been long enough.

Another aspect is updating certain attributes at different
time intervals. Animals and plants react to their environ-
ment through different mechanisms. There are the very fast
mechanisms such as reactions to protect us from danger.
Pulling your hand away from hot things, for example. There
are the slower systems too, like the rationalising parts of the
brain. Some, apparently quick enough that we think of them
as real-time, are the quick thinking and acting processes we
consider to be the actions taken by our brains when we don’t
have time to think about things in detail, such as catching
a ball or balancing a bicycle. There is an even slower part of
the brain, the part that isn’t so much reading this book, but
is consuming the words, and making a model of what they
mean so as to digest them. There is also the even slower sys-
tems, the ones which react to stress, chemical levels spread
through the body as hormones, or just the amount of sugar
you have available, or current level of hydration. An AI which
can think and react on multiple time-scales is more likely to
waste fewer resources, but also much less likely to act oddly,
or flip-flop between their decisions. Committing to doing an
update of every system every frame could land you in an im-
possible situation. Splitting the workload into different up-
date rates can still be regular, but offers a chance to balance
the work over multiple frames.

Another use is in state management. If an AI hears gun-
fire, then they can add a row to a table for when they last

3.6. DON’T USE ENUMS QUITE AS MUCH 73

heard gunfire, and that can be used to determine whether
they are in a heightened state of awareness. If an AI has been
involved in a transaction with the player, it is important they
remember what has happened as long as the player is likely
to remember it. If the player has just sold an AI their +5
longsword, it’s very important the shopkeeper AI still have it
in stock if the player just pops out of the shop for a moment.
Some games don’t even keep inventory between transactions,
and that can become a sore point if they accidentally sell
something they need and then save their progress.

From a gameplay point of view, these extra bits of infor-
mation are all about how the world and player interact. In
some games, you can leave your stuff lying around forever,
and it will always remain just how you left it. It’s quite a feat
that all the things you have dumped in the caves of some
open-world role-playing games, are still hanging around pre-
cisely where you left them hours and hours ago.

The general concept of tacking on data, or patching
loaded data with dynamic additional attributes, has been
around for quite a while. Save games often encode the state
of a dynamic world as a delta from the base state, and one
of the first major uses was in fully dynamic environments,
where a world is loaded, but can be destroyed or altered
later. Some world generators took a procedural landscape
and allowed their content creators to add patches of ex-
tra information, villages, forts, outposts, or even break out
landscaping tools to drastically adjust the generated data.

3.6 Don’t use enums quite as much

Enumerations are used to define sets of states. We could
have had a state variable for the regenerating entity, one that
had infullhealth, ishurt, isdead as its three states. We could
have had a team index variable for the avoidance entity enu-
merating all the available teams. Instead, we used tables to

74 CHAPTER 3. EXISTENTIAL PROCESSING

provide all the information we needed, as there were only two
teams. Any enum can be emulated with a variety of tables.
All you need is one table per enumerable value. Setting the
enumeration is an insert into a table or a migration from one
table to another.

When using tables to replace enums, some things become
more difficult: finding out the value of an enum in an entity
is difficult as it requires checking all the tables which repre-
sent that state for the entity. However, the main reason for
getting the value is either to do an operation based on an ex-
ternal state or to find out if an entity is in the right state to be
considered for an operation. This is disallowed and unnec-
essary for the most part, as firstly, accessing external state
is not valid in a pure function, and secondly, any dependent
data should already be part of the table element.

If the enum is a state or type enum previously handled
by a switch or virtual call, then we don’t need to look up the
value, instead, we change the way we think about the prob-
lem. The solution is to run transforms taking the content of
each of the switch cases or virtual methods as the operation
to apply to the appropriate table, the table corresponding to
the original enumeration value.

If the enum is instead used to determine whether or not
an entity can be operated upon, such as for reasons of com-
patibility, then consider an auxiliary table to represent be-
ing in a compatible state. If you’re thinking about the case
where you have an entity as the result of a query and need
to know if it is in a certain state before deciding to com-
mit some changes, consider that the compatibility you seek
could have been part of the criteria for generating the output
table in the first place, or a second filtering operation could
be committed to create a table in the right form.

In conclusion, the reason why you would put an enum in
table form, is to reduce control flow impact. Given this, it’s
when we aren’t using the enumerations to control instruc-
tion flow that it’s fine to leave them alone. Another possibility

3.7. PRELUDE TO POLYMORPHISM 75

is when the value of the enum changes with great frequency,
as moving objects from table to table has a cost too.

Examples of enumerations that make sense are keybind-
ings, enumerations of colours, or good names for small finite
sets of values. Functions that return enums, such as colli-
sion responses (none, penetrating, through). Any kind of
enumeration which is actually a lookup into data of another
form is good, where the enum is being used to rationalise
the access to those larger or harder to remember data ta-
bles. There is also a benefit to some enums in that they will
help you trap unhandled cases in switches, and to some ex-
tent, they are a self-documenting feature in most languages.

3.7 Prelude to polymorphism

Let’s consider now how we implement polymorphism. We
know we don’t have to use a virtual table pointer; we could
use an enum as a type variable. That variable, the member
of the structure that defines at runtime what that structure
should be capable of and how it is meant to react. That
variable will be used to direct the choice of functions called
when methods are called on the object.

When your type is defined by a member type variable, it’s
usual to implement virtual functions as switches based on
that type, or as an array of functions. If we want to allow
for runtime loaded libraries, then we would need a system
to update which functions are called. The humble switch
is unable to accommodate this, but the array of functions
could be modified at runtime.

We have a solution, but it’s not elegant, or efficient. The
data is still in charge of the instructions, and we suffer the
same instruction cache misses and branch mispredictions
as whenever a virtual function is unexpected. However,
when we don’t really use enums, but instead tables that

76 CHAPTER 3. EXISTENTIAL PROCESSING

represent each possible value of an enum, it is still possible
to keep compatible with dynamic library loading the same
as with pointer based polymorphism, but we also gain the
efficiency of a data-flow processing approach to processing
heterogeneous types.

For each class, instead of a class declaration, we have
a factory that produces the correct selection of table insert
calls. Instead of a polymorphic method call, we utilise ex-
istential processing. Our elements in tables allow the char-
acteristics of the class to be implicit. Creating your classes
with factories can easily be extended by runtime loaded li-
braries. Registering a new factory should be simple as long
as there is a data-driven factory method. The processing of
the tables and their update() functions would also be added
to the main loop.

3.8 Dynamic runtime polymorphism

If you create your classes by composition, and you allow the
state to change by inserting and removing from tables, then
you also allow yourself access to dynamic runtime polymor-
phism. This is a feature normally only available when dy-
namically responding via a switch.

Polymorphism is the ability for an instance in a program
to react to a common entry point in different ways due only
to the nature of the instance. In C++, compile-time polymor-
phism can be implemented through templates and overload-
ing. Runtime polymorphism is the ability for a class to pro-
vide a different implementation for a common base operation
with the class type unknown at compile-time. C++ handles
this through virtual tables, calling the right function at run-
time based on the type hidden in the virtual table pointer at
the start of the memory pointed to by the this pointer. Dy-
namic runtime polymorphism is when a class can react to a
common call signature in different ways based on its type,

3.8. DYNAMIC RUNTIME POLYMORPHISM 77

but its type can change at runtime. C++ doesn’t implement
this explicitly, but if a class allows the use of an internal state
variable or variables, it can provide differing reactions based
on the state as well as the core language runtime virtual ta-
ble lookup. Other languages which define their classes more
fluidly, such as Python, allow each instance to update how
it responds to messages, but most of these languages have
very poor general performance as the dispatch mechanism
has been built on top of dynamic lookup.

1 class shape {
2 public:
3 shape() {}
4 virtual ~shape() {}
5 virtual float getarea () const = 0;
6 };
7 class circle : public shape {
8 public:
9 circle(float diameter) : d(diameter) {}

10 ~circle () {}
11 float getarea () const { return d*d*pi/4; }
12 float d;
13 };
14 class square : public shape {
15 public:
16 square(float across) : width(across) {}
17 ~square () {}
18 float getarea () const { return width*width; }
19 float width;
20 };
21 void test() {
22 circle circle(2.5f);
23 square square(5.0f);
24 shape *shape1 = &circle , *shape2 = □
25 printf("areas are %f and %f\n", shape1 ->getarea (), shape2 ->

getarea ());
26 }

Listing 3.5: simple object-oriented shape code

Consider the code in listing 3.5, where we expect the run-
time method lookup to solve the problem of not knowing the
type but wanting the size. Allowing the objects to change
shape during their lifetime requires some compromise. One
way is to keep a type variable inside the class such as in
listing 3.6, where the object acts as a container for the type
variable, rather than as an instance of a specific shape.

1 enum shapetype { circletype , squaretype };
2 class mutableshape {
3 public:
4 mutableshape(shapetype type , float argument)
5 : m_type(type), distanceacross(argument)
6 {}
7 ~mutableshape () {}
8 float getarea () const {
9 switch(m_type) {

10 case circletype: return distanceacross*distanceacross*pi/4;
11 case squaretype: return distanceacross*distanceacross;
12 }

78 CHAPTER 3. EXISTENTIAL PROCESSING

13 }
14 void setnewtype(shapetype type) {
15 m_type = type;
16 }
17 shapetype m_type;
18 float distanceacross;
19 };
20 void testinternaltype () {
21 mutableshape shape1(circletype , 5.0f);
22 mutableshape shape2(circletype , 5.0f);
23 shape2.setnewtype(squaretype);
24 printf("areas are %f and %f\n", shape1.getarea (), shape2.

getarea ());
25 }

Listing 3.6: ugly internal type code

A better way is to have a conversion function to handle
each case. In listing 3.7 we see how that can be achieved.

1 square squarethecircle(const circle &circle) {
2 return square(circle.d);
3 }
4 void testconvertintype () {
5 circle circle(5.0f);
6 square square = squarethecircle(circle);
7 }

Listing 3.7: convert existing class to new class

Though this works, all the pointers to the old class are
now invalid. Using handles would mitigate these worries,
but add another layer of indirection in most cases, dragging
down performance even further.

If you use existential processing techniques, your classes
defined by the tables they belong to, then you can switch
between tables at runtime. This allows you to change be-
haviour without any tricks, without the complexity of man-
aging a union to carry all the different data around for all
the states you need. If you compose your class from differ-
ent attributes and abilities then need to change them post
creation, you can. If you’re updating tables, the fact that
the pointer address of an entity has changed will mean little
to you. It’s normal for an entity to move around memory in
table-based processing, so there are fewer surprises. Look-
ing at it from a hardware point of view, in order to implement
this form of polymorphism you need a little extra space for
the reference to the entity in each of the class attributes or
abilities, but you don’t need a virtual table pointer to find

3.9. EVENT HANDLING 79

which function to call. You can run through all entities of
the same type increasing cache effectiveness, even though it
provides a safe way to change type at runtime.

Via the nature of having classes defined implicitly by the
tables they belong to, there is an opportunity to register a
single entity with more than one table. This means that not
only can a class be dynamically runtime polymorphic, but
it can also be multi-faceted in the sense that it can be more
than one class at a time. A single entity might react in two
different ways to the same trigger call because it might be
appropriate for the current state of that class.

This kind of multidimensional classing doesn’t come up
much in traditional gameplay code, but in rendering, there
are usually a few different axes of variation such as the ma-
terial, what blend mode, what kind of skinning or other ver-
tex adjustments are going to take place on a given instance.
Maybe we don’t see this flexibility in gameplay code because
it’s not available through the natural tools of the language.
It could be that we do see it, but it’s what some people call
entity component systems.

3.9 Event handling

When you wanted to listen for events in a system in the old
days, you’d attach yourself to an interrupt. Sometimes you
might get to poke at code that still does this, but it’s normally
reserved for old or microcontroller scale hardware. The idea
was simple, the processor wasn’t really fast enough to poll all
the possible sources of information and do something about
the data, but it was fast enough to be told about events and
process the information as and when it arrived. Event han-
dling in games has often been like this, register yourself as
interested in an event, then get told about it when it hap-
pens. The publish and subscribe model has been around
for decades, but there’s no standard interface built for it in

80 CHAPTER 3. EXISTENTIAL PROCESSING

some languages and too many standards in others. As it
often requires some knowledge from the problem domain to
choose the most effective implementation.

Some systems want to be told about every event in the
system and decide for themselves, such as Windows event
handling. Some systems subscribe to very particular events
but want to react to them as soon as they happen, such as
handlers for the BIOS events like the keyboard interrupt.
The events could be very important and dispatched directly
by the action of posting the event, such as with callbacks.
The events could be lazy, stuck in a queue somewhere wait-
ing to be dispatched at some later point. The problem they
are trying to solve will define the best approach.

Using your existence in a table as the registration tech-
nique makes this simpler than before and lets you regis-
ter and de-register with great pace. Subscription becomes
an insert, and unsubscribing a delete. It’s possible to have
global tables for subscribing to global events. It would also
be possible to have named tables. Named tables would al-
low a subscriber to subscribe to events before the publisher
exists.

When it comes to firing off events, you have a choice. You
can choose to fire off the transform immediately, or queue up
new events until the whole transform is complete, then dis-
patch them all in one go. As the model becomes simpler and
more usable, the opportunity for more common use leads
us to new ways of implementing code traditionally done via
polling.

For example: unless a player character is within the dis-
tance to activate a door, the event handler for the player’s
action button needn’t be attached to anything door related.
When the character comes within range, the character
registers into the has pressed action event table with the
open door (X) event result. This reduces the amount of time
the CPU wastes figuring out what thing the player was trying
to activate, and also helps provide state information such as

3.9. EVENT HANDLING 81

on-screen displays saying pressing Green will Open the door.

If we allow for all tables to have triggers like those found
in DBMSs, then it may be possible to register interest in
changes to input mappings, and react. Hooking into low-
level tables such as a insert into a has pressed action ta-
ble would allow user interfaces to know to change their on-
screen display to show the new prompt.

This coding style is somewhat reminiscent of aspect-
oriented programming where it is easy to allow for cross-
cutting concerns in the code. In aspect-oriented program-
ming, the core code for any activities is kept clean, and any
side effects or vetoes of actions are handled by other con-
cerns hooking into the activity from outside. This keeps the
core code clean at the expense of not knowing what is really
going to be called when you write a line of code. How using
registration tables differs is in where the reactions come
from and how they are determined. Debugging can become
significantly simpler as the barriers between cause and ef-
fect normally implicit in aspect-oriented programming are
significantly diminished or removed, and the hard to adjust
nature of object-oriented decision making can be softened
to allow your code to become more dynamic without the
normally associated cost of data-driven control flow.

82 CHAPTER 3. EXISTENTIAL PROCESSING

Chapter 4

Component Based
Objects

A component-oriented design is a good start for high-level
data-oriented design. Developing with components can put
you in the right frame of mind to avoid linking together con-
cepts needlessly. Objects built this way can more easily be
processed by type, instead of by instance, which can lead
to them being easier to profile. Entity systems built around
them are often found in game development as a way to pro-
vide data-driven functionality packs for entities, allowing for
designer control over what would normally be in the realm
of a programmer. Not only are component based entities
better for rapid design changes, but they also stymie the
chances of getting bogged down into monolithic objects, as
most game designers would demand more components with
new features over extending the scope of existing compo-
nents. This is because most new designs need iterating on,
and extending an existing component by code to introduce
design changes wouldn’t allow game designers to switch back
and forth trying out different things as easily. It’s usually
more flexible to add another component as an extension or
as an alternative.

83

84 CHAPTER 4. COMPONENT BASED OBJECTS

A problem that comes up with talking about component-
oriented development is how many different types of entity
component systems there are. To help clear the ambiguity,
we shall describe some different ways in which component-
oriented designs work.

The first kind of component-oriented approach most peo-
ple use is a compound object. There are a few engines that
use them this way, and most of them use the power of their
scripting language to help them achieve a flexible, and de-
signer friendly way to edit and create objects out of compo-
nents. For example, Unity’s GameObject is a base entity type
which can include components by adding them to that par-
ticular instance’s list of components. They are all built onto
the core entity object, and they refer to each other through
it. This approach means every entity still tends to update via
iteration over root instances, not iteration over systems.

Common dialogue around creating compound objects
frequently refers to using components to make up an ob-
ject directly by including them as members of the object.
Though this is better than a monolithic class, it is not yet a
fully component based approach. This technique uses com-
ponents to make the object more readable, and potentially
more reusable and robust to change. These systems are ex-
tensible enough to support large ecosystems of components
shareable between projects. The Unity Asset Store proves
the worth of components from the point of view of rapid
development.

When you introduce component based entities, you have
an opportunity to turn the idea of how you define an ob-
ject on its head. The normal approach to defining an ob-
ject in object-oriented design is to name it, then fill out the
details as and when they become necessary. For example,
your car object is defined as a Car, if not extending Vehicle,
then at least including some data about what physics and
meshes are needed, with construction arguments for wheels
and body shell model assets etc, possibly changing class de-

4.1. COMPONENTS IN THE WILD 85

pendent on whether it’s an AI or player car. In component-
oriented design, objects aren’t so rigidly defined, and don’t
so much become defined after they are named, as much as
a definition is selected or compiled, and then tagged with a
name if necessary. For example, instancing a physics com-
ponent with four-wheel physics, instancing a renderable for
each part (wheels, shell, suspension) adding an AI or player
component to control the inputs for the physics component,
all adds up to something which we can tag as a Car, or leave
as is and it becomes something implicit rather than explicit
and immutable.

A truly component based object is nothing more than the
sum of its parts. This means the definition of a component
based object is also nothing more than an inventory with
some construction arguments. This object or definition ag-
nostic approach makes refactoring and redesigning a much
simpler exercise. Unity’s ECS provides such a solution. In
the ECS, entities are intangible and implicit, and the com-
ponents are first class citizens.

4.1 Components in the wild

Component based approaches to development have been
tried and tested. Many high-profile studios have used com-
ponent driven entity systems to great success1, and this
was in part due to their developer’s unspoken understand-
ing that objects aren’t a good place to store all your data
and traits. For some, it was the opportunity to present
the complexity of what makes up an entity through simpler
pieces, so designers and modders would be able to reason
about how their changes fit within the game framework. For
some, it was about giving power over to performance, where
components are more easily moved to a structure-of-arrays
approach to processing.

1Gas Powered Games, Looking Glass Studios, Insomniac, Neversoft all
used component based objects.

86 CHAPTER 4. COMPONENT BASED OBJECTS

Gas Powered Games’ Dungeon Siege Architecture is prob-
ably the earliest published document about a game company
using a component based approach. If you get a chance, you
should read the article[?] to see where things really kicked
off. The article explains that using components means the
entity type2 doesn’t need to have the ability to do anything.
Instead, all the attributes and functionality come from the
components of which the entity is made.

The list of reasons to move to a manager driven, compo-
nent based approach are numerous, and we shall attempt
to cover at least a few. We will talk about the benefits of
clear update sequences. We will mention how components
can make it easier to debug. We will talk about the prob-
lem of objects applying meaning to data, causing coupling,
and therefore with the dissolution of the object as the central
entity, how the tyranny of the instance is mitigated.

In this section, we’ll show how we can take an existing
class and rewrite it in a component based fashion. We’re
going to tackle a fairly typical complex object, the Player
class. Normally these classes get messy and out of hand
quite quickly. We’re going to assume it’s a Player class de-
signed for a generic 3rd person action game, and take a typ-
ically messy class as our starting point. We shall use listing
4.1 as a reference example of one such class.

1 class Player {
2 public:
3 Player ();
4 ~Player ();
5 Vec GetPos (); // the root node position
6 void SetPos(Vec); // for spawning
7 Vec GetSpeed (); // current velocity
8 float GetHealth ();
9 bool IsDead ();

10 int GetPadIndex (); // the player pad controlling me
11 float GetAngle (); // the direction the player is pointing
12 void SetAnimGoal(...); // push state to anim -tree
13 void Shoot(Vec target); // fire the player ’s weapon
14 void TakeDamage(...); // take some health off , maybe animate

for the damage reaction
15 void Speak(...); // cause the player to start audio/anim
16 void SetControllable(bool); // no control in cut -scene
17 void SetVisible(bool); // hide when loading / streaming
18 void SetModel(...); // init streaming the meshes etc
19 bool IsReadyForRender ();
20 void Render (); // put this in the render queue

2GPG:DG uses GO or Game-Objects, but we stick with the term entity
because it has become the standard term.

4.1. COMPONENTS IN THE WILD 87

21 bool IsControllable (); // player can move about?
22 bool IsAiming (); // in normal move -mode , or aim -mode
23 bool IsClimbing ();
24 bool InWater (); // if the root bone is underwater
25 bool IsFalling ();
26 void SetBulletCount(int); // reload is -1
27 void AddItem(...); // inventory items
28 void UseItem(...);
29 bool HaveItem(...);
30 void AddXP(int); // not really XP , but used to indicate when

we let the player power -up
31 int GetLevel (); // not really level , power -up count
32 int GetNumPowerups (); // how many we’ve used
33 float GetPlayerSpeed (); // how fast the player can go
34 float GetJumpHeight ();
35 float GetStrength (); // for melee attacks and climb speed
36 float GetDodge (); // avoiding bullets
37 bool IsInBounds(Bound); // in trigger zone?
38 void SetGodMode(bool); // cheater
39 private:
40 Vec pos;
41 Vec up, forward , right;
42 Vec velocity;
43 Array <ItemType > inventory;
44 float health;
45 int controller;
46 AnimID idleAnim;
47 AnimID shootAnim;
48 AnimID reloadAnim;
49 AnimID movementAnim;
50 AnimID currentAnimGoal;
51 AnimID currentAnim;
52 int bulletCount;
53 float shotsPerSecond;
54 float timeSinceLastShot;
55 SoundHandle playingSoundHandle; // null most of the time
56 bool controllable;
57 bool visible;
58 AssetID playerModel;
59 LocomotionType currentLocomotiveModel;
60 int xp;
61 int usedPowerups;
62 int SPEED , JUMP , STRENGTH , DODGE;
63 bool cheating;
64 };

Listing 4.1: Monolithic Player class

This example class includes many of the types of things
found in games, where the codebase has grown organically.
It’s common for the Player class to have lots of helper func-
tions to make writing game code easier. Helper functions
typically consider the Player as an instance in itself, from
data in save through to rendering on screen. It’s not un-
usual for the Player class to touch nearly every aspect of a
game, as the human player is the target of the code in the
first place, the Player class is going to reference nearly every-
thing too.

AI characters will have similarly gnarly looking classes if
they are generalised rather than specialised. Specialising AI
was more commonplace when games needed to fit in smaller

88 CHAPTER 4. COMPONENT BASED OBJECTS

machines, but now, because the Player class has to interact
with many of them over the course of the game, they tend to
be unified into one type just like the player, if not the same
as the player, to help simplify the code that allows them to
interact. As of writing, the way in which AI is differentiated
is mostly by data, with behaviour trees taking the main stage
for driving how AI thinks about its world. Behaviour trees are
another concept subject to various interpretations, so some
forms are data-oriented design friendly, and others are not.

4.2 Away from the hierarchy

A recurring theme in articles and post-mortems from people
moving from object-oriented hierarchies of gameplay classes
to a component based approach is the transitional states of
turning their classes into containers of smaller objects, an
approach often called composition. This transitional form
takes an existing class and finds the boundaries between
concepts internal to the class and attempts to refactor them
out into new classes which can be owned or pointed to by
the original class. From our monolithic player class, we can
see there are lots of things that are not directly related, but
that does not mean they are not linked together.

Object-oriented hierarchies are is-a relationships, and
components and composition oriented designs are tradition-
ally thought of as has-a relationships. Moving from one to
the other can be thought of as delegating responsibility or
moving away from being locked into what you are, but hav-
ing a looser role and keeping the specialisation until further
down the tree. Composition clears up most of the common
cases of diamond inheritance issues, as capabilities of the
classes are added by accretion as much as they are added
by overriding.

The first move we need to make will be to take related
pieces of our monolithic class and move them into their own

4.2. AWAY FROM THE HIERARCHY 89

classes, along the lines of composing, changing the class
from owning all the data and the actions that modify the data
into having instances which contain data and delegating ac-
tions down into those specialised structures where possible.
We move the data out into separate structures so they can
be more easily combined into new classes later. We will ini-
tially only separate by categories we perceive as being the
boundaries between systems. For example, we separate ren-
dering from controller input, from gameplay details such as
inventory, and we split out animation from all.

Taking a look at the results of splitting the player class
up, such as in listing 4.2, it’s possible to make some initial
assessments of how this may turn out. We can see how a
first pass of building a class out of smaller classes can help
organise the data into distinct, purpose oriented collections,
but we can also see the reason why a class ends up being a
tangled mess. When you think about the needs of each of
the pieces, what their data requirements are, the coupling
can become evident. The rendering functions need access
to the player’s position as well as the model, and the game-
play functions such as Shoot(Vec target) need access to the
inventory as well as setting animations and dealing dam-
age. Taking damage will need access to the animations and
health. Things are already seeming more difficult to han-
dle than expected, but what’s really happening here is that
it’s becoming clear that code needs to cut across different
pieces of data. With just this first pass, we can start to see
that functionality and data don’t belong together.

1 struct PlayerPhysical {
2 Vec pos;
3 Vec up, forward , right;
4 Vec velocity;
5 };
6 struct PlayerGameplay {
7 float health;
8 int xp;
9 int usedPowerups;

10 int SPEED , JUMP , STRENGTH , DODGE;
11 bool cheating;
12 float shotsPerSecond;
13 float timeSinceLastShot;
14 };
15 struct EntityAnim {
16 AnimID idleAnim;
17 AnimID shootAnim;
18 AnimID reloadAnim;
19 AnimID movementAnim;
20 AnimID currentAnimGoal;
21 AnimID currentAnim;

90 CHAPTER 4. COMPONENT BASED OBJECTS

22 SoundHandle playingSoundHandle; // null most of the time
23 };
24 struct PlayerControl {
25 int controller;
26 bool controllable;
27 };
28 struct EntityRender {
29 bool visible;
30 AssetID playerModel;
31 };
32 struct EntityInWorld {
33 LocomotionType currentLocomotiveModel;
34 };
35 struct Inventory {
36 Array <ItemType > inventory;
37 int bulletCount;
38 };
39
40 class Player {
41 public:
42 Player ();
43 ~Player ();
44 // ...
45 // ... the member functions
46 // ...
47 private:
48 PlayerPhysical phsyical;
49 PlayerGameplay gameplay;
50 EntityAnim anim;
51 PlayerControl control;
52 EntityRender render;
53 EntityInWorld inWorld;
54 Inventory inventory;
55 };

Listing 4.2: Composite Player class

In this first step, we made the player class a container for
the components. Currently, the player has the components,
and the player class has to be instantiated to make a player
exist. To allow for the cleanest separation into components
in the most reusable way, it’s worth attempting to move com-
ponents into being managed by managers, and not handled
or updated by their entities. In doing this, there will also be
a benefit of cache locality when we’re iterating over multiple
entities doing related tasks when we move them away from
their owners.

This is where it gets a bit philosophical. Each system has
an idea of the data it needs in order to function, and even
though they will overlap, they will not share all data. Con-
sider what it is that a serialisation system needs to know
about a character. It is unlikely to care about the current
state of the animation system, but it will care about inven-
tory. The rendering system will care about position and an-
imation, but won’t care about the current amount of ammo.
The UI rendering code won’t even care about where the player

4.3. TOWARDS MANAGERS 91

is, but will care about inventory and their health and dam-
age. This difference of interest is at the heart of why putting
all the data in one class isn’t a good long-term solution.

The functionality of a class, or an object, comes from
how the internal state is interpreted, and how the changes
to state over time are interpreted too. The relationship be-
tween facts is part of the problem domain and could be called
meaning, but the facts are only raw data. This separation of
fact from meaning is not possible with an object-oriented
approach, which is why every time a fact acquires a new
meaning, the meaning has to be implemented as part of the
class containing the fact. Dissolving the class, extracting the
facts and keeping them as separate components, has given
us the chance to move away from classes that instill perma-
nent meaning at the expense of occasionally having to look
up facts via less direct methods. Rather than store all the
possibly associated data by meaning, we choose to only add
meaning when necessary. We add meaning when it is part
of the immediate problem we are trying to solve.

4.3 Towards managers

1 class Renderable {
2 void RenderUpdate () {
3 auto pos = gPositionArray[index];
4 gRenderer.AddModel(playerModel , pos);
5 }
6 };
7 class RenderManager {
8 void Update () {
9 gRenderer.BeginFrame ();

10 for(auto &renderable : renderArray) {
11 renderable.RenderUpdate ();
12 }
13 gRenderer.SubmitFrame ();
14 }
15 };
16 class PhysicsManager {
17 void Update () {
18 for(auto &physicsRequest : physicsRequestArray) {
19 physicalArray[physicsRequest.index]. UpdateValues(

physicsRequest.updateData);
20 }
21 // Run physics simulation
22 for(auto &physical : physicalArray) {
23 positionArray[physical.index].pos = physical.pos;
24 }
25 }
26 };
27 class Controller {

92 CHAPTER 4. COMPONENT BASED OBJECTS

28 void Update () {
29 Pad pad = GetPad(controller);
30 if(pad.IsPressed(SHOOT)) {
31 if(inventoryArray[index]. bulletCount > 0)
32 animRequest.Add(SHOOT_ONCE);
33 }
34 }
35 }
36 };
37 class PlayerInventory {
38 void Update () {
39 if(inv.bulletCount == 0) {
40 if(animArray.contains(inv.index) {
41 anim = animArray[index];
42 anim.currentAnim = RELOAD;
43 inventoryArray[index]. bulletCount = 6;
44 anim.playingSoundHandle = PlaySound(GUNFIRE);
45 }
46 }
47 }
48 };
49 class PlayerControl {
50 void Update () {
51 for(auto &control : controlArray) {
52 control.Update ();
53 }
54 for(auto &inv : inventoryArray) {
55 inv.Update ();
56 }
57 }
58 }

Listing 4.3: Manager ticked components

After splitting your classes up into components, you
might find your classes look more awkward now they are
accessing variables hidden away in new structures. But it’s
not your classes that should be looking up variables, but in-
stead transforms on the classes. A common operation such
as rendering requires the position and the model informa-
tion, but it also requires access to the renderer. Such object
boundary crossing access is seen as a compromise during
game development, but here it can be seen as the method
by which we move away from a class-centric approach to a
data-oriented approach. We will aim at transforming our
data into render requests which affect the graphics pipeline
without referring to data unimportant to the renderer.

Referring to listing 4.3, we move to no longer having a
player update, but instead an update for each component
that makes up the player. This way, everyone entity’s physics
is updated before it is rendered, or could be updated while
the rendering is happening on another thread. All entity’s
controls (whether they be player or AI) can be updated be-

4.3. TOWARDS MANAGERS 93

fore they are animated. Having the managers control when
the code is executed is a large part of the leap towards fully
parallelisable code. This is where performance can be gained
with more confidence that it’s not negatively impacting other
areas. Analysing which components need updating every
frame, and which can be updated less frequently leads to
optimisations that unlock components from each other.

In many component systems that allow scripting lan-
guages to define the actions taken by components or their
entities, performance can fall foul of the same inefficiencies
present in an object-oriented program design. Notably, the
dependency inversion practice of calling Tick or Update func-
tions will often have to be sandboxed in some way which will
lead to error checking and other safety measures wrapping
the internal call. There is a good example of this being an
issue with the older versions of Unity, where their compo-
nent based approach allowed every instance to have its own
script which would have its own call from the core of Unity
on every frame. The main cost appeared to be transitioning
in and out of the scripting language, crossing the boundary
between the C++ at the core, and the script that described
the behaviour of the component. In his article 10,000 Up-
date() calls[?], Valentin Simonov provided information on
why the move to managers makes so much sense, giving
details on what is costing the most when utilising depen-
dency inversion to drive your general code update strategies.
The main cost was in moving between the different areas
of code, but even without having to straddle the language
barrier, managers make sense as they ensure updates to
components happen in sync.

What happens when we let more than just the player use
these arrays? Normally we’d have some separate logic for
handling player fire until we refactored the weapons to be
generic weapons with NPCs using the same code for weapons
probably by having a new weapon class that can be pointed
to by the player or an NPC, but instead what we have here
is a way to split off the weapon firing code in such a way as

94 CHAPTER 4. COMPONENT BASED OBJECTS

to allow the player and the NPC to share firing code without
inventing a new class to hold the firing. In fact, what we’ve
done is split the firing up into the different tasks it really
contains.

Tasks are good for parallel processing, and with compo-
nent based objects, we open up the opportunity to move most
of our previously class oriented processes out, and into more
generic tasks that can be dished out to whatever CPU or co-
processor can handle them.

4.4 There is no entity

What happens when we completely remove the Player class?
If an entity can be represented by its collection of compo-
nents, does it need any further identity than those self same
components? Like the values in the rows of a table, the com-
ponents describe a single instance, but also like the rows in
a table, the table is also a set. In the universe of possibilities
of component combinations, the components which make up
the entity are not facts about the entity, but are the entity,
and are the only identity the entity needs. As an entity is
its current configuration of components, then there is the
possibility of removing the core Player class completely. Re-
moving this class can mean we no longer think of the player
as being the centre of the game, but because the class no
longer exists, it means the code is no longer tied to a specific
singular entity. Listing 4.4 shows a rough example of how
you might develop this kind of setup.

1 struct Orientation { Vec pos , up , forward , right; };
2 SparseArray <Orientation > orientationArray;
3 SparseArray <Vec > velocityArray;
4 SparseArray <float > healthArray;
5 SparseArray <int > xpArray , usedPowerupsArray , controllerID ,

bulletCount;
6 struct Attributes { int SPEED , JUMP , STRENGTH , DODGE; };
7 SparseArray <Attributes > attributeArray;
8 SparseArray <bool > godmodeArray , controllable , isVisible;
9 SparseArray <AnimID > currentAnim , animGoal;

10 SparseArray <SoundHandle > playingSound;
11 SparseArray <AssetID > modelArray;
12 SparseArray <LocomotionType > locoModelArray;
13 SparseArray <Array <ItemType > > inventoryArray;
14
15 int NewPlayer(int padID , Vec startPoint) {

4.4. THERE IS NO ENTITY 95

16 int ID = newID();
17 controllerID[ID] padID;
18 GetAsset(" PlayerModel ", ID); // adds a request to put the

player model into modelArray [ID]
19 orientationArray[ID] = Orientation(startPoint);
20 velocityArray[ID] = VecZero ();
21 return ID;
22 }

Listing 4.4: Sparse arrays for components

Moving away from compile-time defined classes means
many other classes can be invented without adding much
code. Allowing scripts to generate new classes of entity by
composition or prototyping increases their power dramati-
cally, and cleanly increase the apparent complexity of the
game without adding more actual complexity. Finally, all the
different entities in the game will now run the same code at
the same time, which simplifies and centralises your pro-
cessing code, leading to more opportunity to share optimi-
sations, and fewer places for bugs to hide.

96 CHAPTER 4. COMPONENT BASED OBJECTS

Chapter 5

Hierarchical Level of
Detail and
Implicit-state

Consoles and graphics cards are not generally bottlenecked
at the polygon rendering stage in the pipeline. Usually, they
are bandwidth bound. If there is a lot of alpha blending,
it’s often fill-rate issues. For the most part, graphics chips
spend a lot of their time reading textures, and texture band-
width often becomes the bottleneck. Because of this, the old
way of doing level of detail with multiple meshes with de-
creasing numbers of polygons is never going to be as good
as a technique which takes into account the actual data re-
quired of the level of detail used in each renderable. The vast
majority of stalls when rendering come from driver side pro-
cessing, or from processing too much for what you want to
actually render. Hierarchical level of detail can fix the prob-
lem of high primitive count which causes more driver calls
than necessary.

The basic approach for art is to make optimisations by
grouping and merging many low level of detail meshes into

97

98 CHAPTER 5. HIERARCHICAL LEVEL OF DETAIL

one single low level of detail mesh. This reduces the time
spent in the setup of render calls which is beneficial in sit-
uations where driver calls are costly. In a typical very large
scale environment, a hierarchical level of detail approach to
game content can reduce the workload on a game engine by
an order of magnitude as the number of entities in the scene
considered for processing and rendering drops significantly.

Even though the number of polygons rendered may be
exactly the same, or maybe even higher, the fact that the
engine usually is only handling roughly the same number of
entities at once on average increases stability and allows for
more accurately targeted optimisations of both art and code.

5.1 Existence from Null to Infinity

If we consider that entities can be implicit based on their at-
tributes, we can utilise the technique of hierarchical level of
detail to offer up some optimisations for our code. In tra-
ditional level of detail techniques, as we move further away
from the object or entity of interest, we lose details and fi-
delity. We might reduce polygon count, or texture sizes,
or even the number of bones in a skeleton that drives the
skinned mesh. Game logic can also degrade. Moving away
from an entity, it might switch to a much coarser grain time
step. It’s not unheard of for behaviours of AI to migrate from
a 50hz update to a 1hz update. In a hierarchical level of de-
tail implementation, as the entity becomes closer, or more
apparent to the player, it might be that only at that point
does it even begin to exist.

Consider a shooter game where you are defending a base
from incoming attacks. You are manning an anti-air turret,
and the attackers come in squadrons of aircraft, you can see
them all coming at once, over ten thousand aircraft in all,
and up to a hundred at once in each squadron. You have to
shoot them down or be inundated with gunfire and bombs,

5.1. EXISTENCE 99

taking out both you and the base you are defending.

Running full AI, with swarming for motion and avoidance
for your slower moving ordnance might be too much if it was
run on all ten thousand ships every tick, but you don’t need
to. The basic assumption made by most AI programmers is
that unless they are within attacking range, then they don’t
need to be running AI. This is true and offers an immediate
speedup compared to the naı̈ve approach. Hierarchical LOD
provides another way to think about this, by changing the
number of entities based on how they are perceived by the
player. For want of a better term, collective lodding is a name
that describes what is happening behind the scenes a little
better. Sometimes there is no hierarchy, and yet, there can
still be a change in the manner in which the elements are
referenced between the levels of detail. The term collective
lodding is inspired by the concept of a collective term. A
murder of crows is a computational element, but each crow
is a lower level of detail sub-element of the collective.

Murder

yy �� %%
Crow Crow Crow

In the collective lodding version of the base defender
game, there are a few wave entities which project squadron
blips on the radar. The squadrons don’t exist as their own
entities until they get close enough. Once a wave’s squadron
is within range, the wave will decrease its squadron count
and pop out a new squadron entity. The newly created
squadron entity shows blips on the radar for each of its
component aircraft. The aircraft don’t exist yet, but they are
implicit in the squadron in the same way the squadron was
implicit in the wave. The wave continues to pop Squadrons
as they come into range, and once its internal count has
dropped to zero, it can delete itself as it now represents no
entities. As a squadron comes into even closer range, it
pops out its aircraft into their own entities and eventually

100 CHAPTER 5. HIERARCHICAL LEVEL OF DETAIL

deletes itself. As the aircraft get closer, traditional level of
detail techniques kick in and their renderables are allowed
to switch to higher resolution and their AI is allowed to run
at a higher intelligence setting.

Blip

ww �� ''
Squadron Squadron

ww �� ''

Squadron

Aircraft Aircraft

ww �� ''

Aircraft

EjectingP ilot Fuselage Wing

When the aircraft are shot at, they switch to a taken dam-
age type. They are full health enemy aircraft unless they take
damage. If an AI reacts to damage with fear, they may eject,
adding another entity to the world. If the wing of the plane
is shot off, then that also becomes a new entity in the world.
Once a plane has crashed, it can delete its entity and replace
it with a smoking wreck entity that will be much simpler to
process than an aerodynamic simulation, faked or not.

If things get out of hand and the player can’t keep the
aircraft at bay and their numbers increase in size so much
that any normal level of detail system can’t kick in to miti-
gate it, collective lodding can still help by returning aircraft
to squadrons and flying them around the base attacking as a
group, rather than as individual aircraft. In the board game
Warhammer Fantasy Battle, there were often so many troops
firing arrows at each other, that players would often think
of attacks by squads as being collections of attacks, and not
actually roll for each individual soldier, rat, orc or whatever it
was, but instead counted up how many troops they had, and
rolled that many dice to see how many attacks got through.
This is what is meant by attacking as a squadron. The air-

5.2. MEMENTOS 101

craft no longer attack, instead, the likelihood an attack will
succeed is calculated, dice are rolled, and that many attacks
get through. The level of detail heuristic can be tuned so
the nearest and front-most squadron are always the high-
est level of detail, effectively making them roll individually,
and the ones behind the player maintain a very simplistic
representation.

This is game development smoke and mirrors as a ba-
sic game engine element. In the past we have reduced the
number of concurrent attacking AI1, reduced the number of
cars on screen by staggering the lineup over the whole race
track2, and we’ve literally combined people together into one
person instead of having loads of people on screen at once3.
This kind of reduction of processing is commonplace. Now
consider using it everywhere appropriate, not just when a
player is not looking.

5.2 Mementos

Reducing detail introduces an old problem, though. Chang-
ing level of detail in game logic systems, AI and such, brings
with it the loss of high detail history. In this case, we need
a way to store what is needed to maintain a highly cohesive
player experience. If a high detail squadron in front of the
player goes out of sight and another squadron takes their
place, we still want any damage done to the first group to
reappear when they come into sight again. Imagine if you
had shot out the glass on all the aircraft and when they came
round again, it was all back the way it was when they first
arrived. A cosmetic effect, but one that is jarring and makes
it harder to suspend disbelief.

When a high detail entity drops to a lower level of de-

1I believe this was Half-Life
2Ridge Racer was known for this
3Populous did this

102 CHAPTER 5. HIERARCHICAL LEVEL OF DETAIL

tail, it should store a memento, a small, well-compressed
nugget of data that contains all the necessary information
in order to rebuild the higher detail entity from the lower de-
tail one. When the squadron drops out of sight, it stores
a memento containing compressed information about the
amount of damage, where it was damaged, and rough posi-
tions of all the aircraft in the squadron. When the squadron
comes into view once more, it can read this data and gener-
ate the high detail entities back in the state they were before.
Lossy compression is fine for most things, it doesn’t matter
precisely which windows, or how they were cracked, maybe
just that about 2/3 of the windows were broken.

HighDetail

store

''

HighDetail

Memento

extract
77

Another example is in a city-based free-roaming game. If
AIs are allowed to enter vehicles and get out of them, then
there is a good possibility you can reduce processing time
by removing the AIs from the world when they enter a ve-
hicle. If they are a passenger, then they only need enough
information to rebuild them and nothing else. If they are
the driver, then you might want to create a new driver type
based on some attributes of the pedestrian before making
the memento for when they exit the vehicle.

If a vehicle reaches a certain distance away from the
player, then you can delete it. To keep performance high,
you can change the priorities of vehicles that have memen-
tos so they try to lose sight of the player thus allowing for
earlier removal from the game. Optimisations like this are
hard to coordinate in object-oriented systems as internal in-
spection of types isn’t encouraged. Some games get around
it by designing in ways to reset memento data as a gameplay
element. The game Zelda: Breath of the Wild resets mon-
sters during a Blood Moon, and by doing so, you as a player,

5.3. JIT MEMENTOS 103

are not surprised when you return to camps to find all the
monsters are just as you left them.

5.3 JIT mementos

If a vehicle that has been created as part of the ambient pop-
ulation is suddenly required to take on a more important
role, such as the car being involved in a firefight, it needs
to gain detail. This detail must come from somewhere and
must be convincing. It is important to generate new entities
which don’t seem overly generic or unlikely, given what the
player knows about the game so far. Generating that data
can be thought of as providing a memento to read from just
in time. Just in time mementos, or JIT mementos, offers
a way to create fake mementos that can provide continuity
by utilising pseudo-random generators or hash functions to
create suitable information on demand without relying on
storing data anywhere. Instead, they rely only on informa-
tion provided implicitly by the entity in need of it.

Instead of generating new characters from a global ran-
dom number generator, it is possible to seed the generator
with details about the thing that needs generation. For ex-
ample, you want to generate a driver and some passengers,
as you’re about to get close enough to a car to need to render
the people inside it. Just creating random characters from
a set of lookup tables is good, but if you drive past them far
enough for them to get out of rendering range, and then re-
turn, the people in the car might not look the same anymore
as they had to be regenerated. Instead, generate the driver
and passengers using some other unique attribute, such as
the license plate, as a seed. This way, while you have not
affected the result of generating the memento, you have no
memory overhead to store it, and no object lifetime to worry
about either, as it can always be reproduced from nothing
again.

104 CHAPTER 5. HIERARCHICAL LEVEL OF DETAIL

V ehicle

seed

vv
PassengerStub

seed ((

+3 Character

Memento

extract

77

This technique is used all the time in landscape genera-
tors, where the landscape is seeded from the x,y location in
the map, so why not use it when generating the weather for
day 107 of the game? When generating Perlin noise, many
algorithms call upon a noise function, but to have a repro-
ducible landscape, the noise function must be a repeatable
function, so it can create the same results over and over
again. If you’re generating a landscape, it’s preferred for the
noise function to be coherent, that is, for small variances in
the input function, only small changes should be observed
in the output. We don’t need such qualities when generating
JIT mementos, and a hash function which varies wildly with
even the smallest change in the input will suffice.

An example of using this to create a JIT memento might
be to generate a house for a given landscape. First, take
any normal random number generator and seed it with the
location of the building. Given the landscape the house is on,
select from a building template and start generating random
numbers to answer questions about the house the same way
loading a file off disk answers questions about the object.
How large is the house? Is it small, medium, large? Generate
a random number and select one answer. How many rooms
does it have based on the size? 2 or 3 for small, or (int)(7

+ rand * 10) for large. The point is, once you have seeded
the random number generator, you’re going to get the same
results back every time you run through the same process.
Every time you visit the house at {223.17,-100.5}, you’re
going to see the same 4 (or more) walls, and it will have the
same paint job, broken windows, or perfect idyllic little frog

5.3. JIT MEMENTOS 105

pond in the back garden.

JIT mementos can be the basis of a highly textured en-
vironment with memento style sheets or style guides which
can direct a feel bias for any mementos generated in those
virtual spaces. Imagine a city style guide that specifies rules
for occupants of cars. The style guide might claim that busi-
nessmen might share, but are much less likely to, that fami-
lies have children in the back seats with an older adult driv-
ing. It might declare that young adults tend to drive around
in pairs. Style guides help add believability to any generated
data. Add in local changes such as having types of car linked
to types of drivers. Have convertibles driven by well-dressed
types or kids, low riders driven almost exclusively by their
stereotypical owner, and imports and modded cars driven by
young adults. In a space game, dirty hairy pilots of cargo
ships, well turned out officers commanding yachts, rough
and ready mercenaries in everything from a single seater to
a dreadnought. Then, once you have the flavour in place,
allow for a little surprise to bring it to life fully.

JIT mementos are a good way to keep the variety up, and
style guides bias that so it comes without the impression that
everyone is different so everyone is the same. When these
biases are played out without being strictly adhered to, you
can build a more textured environment. If your environment
is heavily populated with completely different people all the
time, there is nothing to hold onto, no patterns to recognise.
When there are no patterns, the mind tends to see noise
or consider it to be a samey soup. Even the most varied
virtual worlds look bland when there is too much content
all in the same place. Walk along the street and see if you
can spot any identical paving slabs. You probably can, but
also see the little bits of damage, decay, dirt, mistakes, and
blemishes. To make an environment believable, you have to
make it look like someone took a lot of effort trying to make
it all conform.

106 CHAPTER 5. HIERARCHICAL LEVEL OF DETAIL

5.4 Alternative axes

As with all things, take away an assumption and you can
find other uses for a tool. Whenever you read about, or work
with a level of detail system, you will be aware that the con-
straint on what level of detail is shown has always been some
distance function in space. It’s now time to take the assump-
tion, discard it, and analyse what is really happening.

First, we find that if we take away the assumption of dis-
tance, we can infer the conditional as some kind of linear
measure. This value normally comes from a function which
takes the camera position and finds the relative distance to
the entity under consideration. What we may also realise
when discarding the distance assumption is a more funda-
mental understanding of what we are trying to do. We are
using a single runtime variable to control the presentation
state of the entities of our game. We use runtime variables
to control the state of many parts of our game already, but
in this case, there is a passive presentation response to the
variable, or axis being monitored. The presentation is usu-
ally some graphical, or logical level of detail, but it could be
something as important to the entity as its own existence.

5.4.1 The true measure

Distance is the measure we normally use to identify what
level of detail something should be at, but it’s not the met-
ric we really need, it’s just very closely related. In fact, it’s
inversely related. The true metric of level of detail should
be how much of our perception an entity is taking up. If
an entity is very large, and far away, it takes up as much of
our perception as something small and nearby. All this time
we have talked about hierarchical level of detail the elephant
in the room has been the language used. We had waves on
our radar. They took up as much perception attention as
a single squadron, and a single squadron took up as much

5.4. ALTERNATIVE AXES 107

perceptual space as a single aircraft when it was in firing
range.

Understand this concept: level of detail should be defined
by how the player perceives a thing, at the range it is at.
If you internalise this, you will be on your way to making
good decisions about where the boundaries are between your
levels of detail.

5.4.2 Beyond space

Let’s now consider what other variables we can calculate
that present an opportunity to remove details from the
game’s representation. We should consider anything which
presents an opportunity to no longer process data unneces-
sarily. If some element of a game is not the player’s current
concern, or will fade from memory soon enough, we can
dissolve it away. If we consider the probability of the player
caring about a thing as a metric, then we begin to think
about recollection and attention as measurable quantities
we can use to drive how we end up representing it.

An entity that you know has the player’s attention, but is
hidden, maintains a large stake on the player’s perception.
That stake allows the entity to maintain a higher priority on
level of detail than it would otherwise deserve. For example,
a character the player is chasing in an assassination game,
may be spotted only once at the beginning of the mission,
but will have to remain at a high consistency of attribute
throughout the mission, as they are the object the player
cares about the most, coming second only to primitive needs
such as survival. Even if the character slips into the crowd,
and is not seen again until much later, they must look just
like they did when you first caught sight of them.

Ask the question, how long until a player forgets about
something that might otherwise be important? This infor-
mation will help reduce memory usage as much as distance.

108 CHAPTER 5. HIERARCHICAL LEVEL OF DETAIL

If you have ever played Grand Theft Auto IV, you might have
noticed that the cars can disappear just by not looking at
them. As you turn around a few times you might notice the
cars seem to be different each time you face their way. This
is a stunning use of temporal level of detail. Cars which have
been bumped into or driven and parked by the player remain
where they were, because, in essence, the player put them
there. Because the player has interacted with them, they
are likely to remember they are there. However, ambient ve-
hicles, whether they are police cruisers or civilian vehicles,
are less important and don’t normally get to keep any special
status so can vanish when the player looks away.

At the opposite end of the scale, some games remem-
ber everything you have done. Kill enemies in the first few
minutes of your game, loot their corpses, and chuck items
around, then come back a hundred hours later and the items
are still wherever you left them. Games like this store vast
amounts of tiny details, and these details need careful stor-
age otherwise they would cause continual and crushing per-
formance degradation. Using spatially mapped mementos
is one approach that can attempt to rationalise this kind of
level of attention to player game interaction.

In addition to time-since-seen, some elements may base
their level of detail on how far a player has progressed in
the game, or how many of something a player has, or how
many times they have done it. For example, a typical barter-
ing animation might be cut shorter and shorter as the game
uses the axis of how many recent barters to draw back the
length of any non-interactive sections which could be caused
by the event. This can be done simply, and the player will be
thankful. Consider allowing multi-item transactions only af-
ter a certain number of single transactions have happened.
In effect, you could set up gameplay elements, reactions to
situations, triggers for tutorials, reminders, or extensions to
gameplay options all through these abstracted level of de-
tail style axes. Handling the idea of player expertise through
axes of level of detail of gameplay mechanic depth or com-

5.4. ALTERNATIVE AXES 109

plexity.

This way of manipulating the present state of the game is
safer from transition errors. These are errors that happen
because going from one state to another may have set some-
thing to true when transitioning one direction, but might not
set it back to false when transitioning the other way. You can
think of the states as being implicit on the axis. When state
is modified, it’s prone to being modified incorrectly, or not
modified at the right time. If state is tied to other variables,
that is, if state is a function of other state, then it’s less prone
to inconsistency.

An example of where transition errors occur is in menu
systems where all transitions should be reversible, some-
times you may find that going down two levels of menu, but
back only one level, takes you back to where you started. For
example, entering the options menu, then entering an adjust
volume slider, but backing out of the slider might take you
out of the options menu altogether. These bugs are common
in UI code as there are large numbers of different layers of
interaction. Player input is often captured in obscure ways
compared to gameplay input response. A common problem
with menus is one of ownership of the input for a partic-
ular frame. For example, if a player hits both the forward
and backward button at the same time, a state machine UI
might choose to enter whichever transition response comes
first. Another might manage to accept the forward event,
only to have the next menu accept the back event, but worst
of all might be the unlikely, but seen in the wild, menu tran-
sitioning to two different menus at the same time. Some-
times the menu may transition due to external forces, and if
there is player input captured in a different thread of execu-
tion, the game state can become disjoint and unresponsive.
Consider a network game’s lobby, where if everyone is ready
to play, but the host of the game disconnects while you are
entering into the options screen prior to game launch, in
a traditional state-machine like approach to menus, where
should the player return to once they exit the options screen?

110 CHAPTER 5. HIERARCHICAL LEVEL OF DETAIL

The lobby would normally have dropped you back to a server
search screen, but in this case, the lobby has gone away to
be replaced with nothing. This is where having simple axes
instead of state machines can prove to be simpler to the point
of being less buggy and more responsive.

5.5 Collective lodding - or how to re-
duce your instance count.

It’s an ugly term, and I hope one day someone comes up with
a better one, but it’s a technique that didn’t need a name un-
til people stopped doing it. Over the time it has taken to write
this book, games have started to have too many instances.
We’re not talking about games that have hundreds of en-
emy spacecraft, battling each other in a desperate fight for
superiority, firing off missile after missile, generating visual
effects which spawn multiple GPU particles. We’re talking
about simple seeming games. We’re talking about your aver-
age gardening simulator, where for some reason, every leaf
on your plants is modeled as an instance, and every insect
going around pollinating is an instance, and every plot of
land in which your plants can grow is an instance, and ev-
ery seed you sew is an instance, and each have their own
lifetimes, components, animations, and their own internal
state adding to the ever-growing complexity of the system as
a whole.

I have a fictional farming game, where I harvest wheat. I
have a field which is 100 by 100 tiles, each with wheat grow-
ing. In some games, those wheat tiles would be instances,
and the wheat on the tiles would be instances too. There’s
little reason for this, as we can reduce the field down to some
very small data. What do we actually need to know about the
field and the wheat? Do we need to know the position of the
wheat? We don’t, because it’s in a tiled grid. Do we need to
know if the tile has wheat or not? Yes, but it doesn’t need

5.5. COLLECTIVE LOD 111

an object instance to tell us that. Do we need an object to
render the wheat? It needs to blow in the wind, so don’t
we need to have it keep track of where it is to blow around
and maintain momentum? No, because in almost all cases,
cheating at this kind of thing is cheap and believable. Grass
rendering works fine without an instance per blade of grass.
The right data format for a field full of wheat could be as
simple as 10,000 unsigned chars, with zero being no wheat,
and values from 1 to 100 being how grown it is. The wheat
doesn’t have positions. The positions have wheat.

If you have a stack of blocks in Minecraft, you don’t have
64 instances in your inventory slot, you just have a type, and
a multiple. You have a stack. If you have a stack of plates
in a restaurant sim, you don’t have 10 plate instances, you
have a stack of plates object with an int saying how many
plates there currently are.

The underlying principle of this is making sure you have
slots in the world, whether hand placed, or generated in a
pattern, and keeping track of what’s in them, rather than
placing things in the world directly. Refer to things by how a
stranger would name them. When you ask someone what is
in a room, they won’t say a sofa, a bookshelf, an armchair,
another armchair, a coffee table, a TV stand, more book-
shelves. No, they will say furniture. Look at your game from
the outside. Use how the players describe what is on screen.
Look at how they describe their inventory. Look at how they
describe the game, understand their mental model, match
that, and you will find a strong correlation to what is taking
up the players perception space.

When normalising your data, look at how your rows are
aligned to some kind of container. If you have any form of
grid, from 1D to 4D, it’s worth looking at how you can utilise
it. Don’t ignore other tesselations, such as triangle grids,
or hexagon grids. Hexagon grids, in particular, get a bad
name, but they can be represented by a square grid with
different traversal functions. Don’t give up just because the

112 CHAPTER 5. HIERARCHICAL LEVEL OF DETAIL

literal grid is irregular either, in some grid-based games, the
centres of the cells are perturbed to give a more natural look,
but the game code can be strict grid-based, leading to better
solution space, and more likely easier for the player to reason
about what they can and can’t do.

Chapter 6

Searching

When looking for specific data, it’s very important to remem-
ber why you’re doing it. If the search is not necessary, then
that’s your biggest possible saving. Finding if a row exists in
a table will be slow if approached naı̈vely. You can manually
add searching helpers such as binary trees, hash tables, or
just keep your table sorted by using ordered insertion when-
ever you add to the table. If you’re looking to do the latter,
this could slow things down, as ordered inserts aren’t nor-
mally concurrent, and adding extra helpers is normally a
manual task. In this chapter, we find ways to combat all
these problems.

6.1 Indexes

Database management systems have long held the concept
of an index. Traditionally, they were automatically added
when a DBMS noticed a particular query had been run a
large number of times. We can use this idea and implement
a just-in-time indexing system in our games to provide the
same kinds of performance improvement.

113

114 CHAPTER 6. SEARCHING

In SQL, every time you want to find out if an element
exists, or even just generate a subset like when you need to
find all the entities in a certain range, you will have to build
it as a query. The query exists as an entity of a kind, and
helps build intuition into the DBMS.

The query that creates the row or table generation can be
thought of as an object which can hang around in case it’s
used again, and can transform itself depending on how it’s
used over time. Starting out as a simple linear search query
(if the data is not already sorted), the process can find out
that it’s being used quite often through internal telemetry,
and be able to discover that it generally returns a simply
tunable set of results, such as the first N items in a sorted
list. After some predefined threshold number of operations,
lifetime, or other metric, it would be valuable for the query
object to hook itself into the tables it references. Hooking
into the insertion, modification, and deletion would allow the
query to update its answers, rather than run the full query
again each time it’s asked.

This kind of smart object is what object-oriented pro-
gramming can bring to data-oriented design. It can be a
significant saving in some cases, but it can also be safe, due
to its optionality.

If we build generalised backends to handle building
queries into these tables, they can provide multiple ben-
efits. Not only can we expect garbage collection of indexes
which aren’t in use, but they can also make the programs
in some way self-documenting and self-profiling. If we study
the logs of what tables had pushed for building indexes for
their queries, then we can see data hotspots and where there
is room for improvement. It may even be possible to have
the code self-document what optimisation steps should be
taken.

6.2. DATA-ORIENTED LOOKUP 115

6.2 Data-oriented Lookup

The first step in any data-oriented approach to searching
is to understand the difference between the search criteria,
and the data dependencies of the search criteria. Object-
oriented solutions to searching often ask the object whether
or not it satisfies some criteria. Because the object is asked
a question, there can be a lot of code required, memory in-
directly accessed, and cache lines filled but hardly utilised.
Even outside of object-oriented code-bases, there’s still a lot
of poor utilisation of memory bandwidth. In listing 6.1, there
is an example of simple binary search for a key in a naı̈ve im-
plementation of an animation container. This kind of data
access pattern is common in animation libraries, but also in
many hand-rolled structures which look up entries that are
trivially sorted along an axis.

1 struct FullAnimKey {
2 float time;
3 Vec3 translation;
4 Vec3 scale;
5 Vec4 rotation; // sijk quaternion
6 };
7 struct FullAnim {
8 int numKeys;
9 FullAnimKey *keys;

10 FullAnimKey GetKeyAtTimeBinary(float t) {
11 int l = 0, h = numKeys -1;
12 int m = (l+h) / 2;
13 while(l < h) {
14 if(t < keys[m].time) {
15 h = m-1;
16 } else {
17 l = m;
18 }
19 m = (l+h+1) / 2;
20 }
21 return keys[m];
22 }
23 };

Listing 6.1: Binary search through objects

We can improve on this very quickly by understanding
the dependence on the producer and the consumer of the
process. Listing 6.2, is a quick rewrite that saves us a lot
of memory requests by moving out to a partial structure-of-
arrays approach. The data layout stems from recognising
what data is needed to satisfy the requirements of the pro-
gram.

116 CHAPTER 6. SEARCHING

First, we consider what we have to work with as inputs,
and then what we need to provide as outputs. The only input
we have is a time value in the form of a float, and the only
value we need to return in this instance is an animation key.
The animation key we need to return is dependent on data
internal to our system, and we are allowing ourselves the
opportunity to rearrange the data any way we like. As we
know the input will be compared to the key times, but not
any of the rest of the key data, we can extract the key times
to a separate array. We don’t need to access just one part of
the animation key when we find the one we want to return,
but instead, we want to return the whole key. Given that,
it makes sense to keep the animation key data as an array
of structures so we access fewer cache lines when returning
the final value.

1 struct DataOnlyAnimKey {
2 Vec3 translation;
3 Vec3 scale;
4 Vec4 rotation; // sijk quaternion
5 };
6 struct DataOnlyAnim {
7 int numKeys;
8 float *keyTime;
9 DataOnlyAnimKey *keys;

10 DataOnlyAnimKey GetKeyAtTimeBinary(float t) {
11 int l = 0, h = numKeys -1;
12 int m = (l+h) / 2;
13 while(l < h) {
14 if(t < keyTime[m]) {
15 h = m-1;
16 } else {
17 l = m;
18 }
19 m = (l+h+1) / 2;
20 }
21 return keys[m];
22 }
23 };

Listing 6.2: Binary search through values

It is faster on most hardware, but why is it faster? The
first impression most people get is that we’ve moved the keys
from nearby the returned data, ensuring we have another
fetch before we have the chance to return. Sometimes it pays
to think a bit further than what looks right at first glance.
Let’s look at the data layout of the AnimKeys.

6.2. DATA-ORIENTED LOOKUP 117

t tx ty tz sx sy sz rs
ri rj rk t tx ty tz sx cacheline

sy sz rs ri rj rk t tx
ty tz sx sy sz rs ri rj cacheline

rk t tx ty tz sx sy sz
rs ri rj rk t . . . cacheline

Primarily, the processing we want to be doing is all about
finding the index of the key by hunting for through values in
a list of times. In the extracted times code, we’re no longer
looking for a whole struct by one of its members in an array
of structs. This is faster because the cache will be filled with
mostly pertinent data during the hunt phase. In the orig-
inal layout, we one or two key times per cache line. In the
updated code, we see 16 key times per cache line.

t0 t1 t2 t3 t4 t5 t6 t7
t8 t9 t10 t11 t12 t13 t14 t15 cacheline

There are ways to organise the data better still, but any
more optimisation requires a complexity or space time trade
off. A basic binary search will home in on the correct data
quite quickly, but each of the first steps will cause a new
cache line to be read in. If you know how big your cache
line is, then you can check all the values that have been
loaded for free while you wait for the next cache line to load
in. Once you have got near the destination, most of the data
you need is in the cache and all you’re doing from then on
is making sure you have found the right key. In a cache line
aware engine, all this can be done behind the scenes with
a well-optimised search algorithm usable all over the game
code. It is worth mentioning again, every time you break out
into larger data structures, you deny your proven code the
chance to be reused.

A binary search is one of the best search algorithms for
using the smallest number of instructions to find a key value.
But if you want the fastest algorithm, you must look at what
takes time, and often, it’s not the instructions. Loading a
whole cache line of information and doing as much as you

118 CHAPTER 6. SEARCHING

can with that would be a lot more helpful than using the
smallest number of instructions. It is worth considering that
two different data layouts for an algorithm could have more
impact than the algorithm used.

As a comparison to the previous animation key finding
code, a third solution was developed which attempted to
utilise the remaining cache line space in the structure. The
structure that contained the number of keys, and the two
pointers to the times and the key data, had quite a bit of
space left on the cache line. One of the biggest costs on the
PS3 and Xbox360 was poor cache line utilisation, or CLU.
In modern CPUs, it’s not quite as bad, partially because the
cache lines are smaller, but it’s still worth thinking about
what you get to read for free with each request. In this
particular case, there was enough cache line left to store
another 11 floating point values, which are used as a place
to store something akin to skip-list.

times keys n s0 s1 s2
s3 s4 s5 s6 s7 s8 s9 s10 cacheline

1 struct ClumpedAnim {
2 float *keyTime;
3 DataOnlyAnimKey *keys;
4 int numKeys;
5 static const int numPrefetchedKeyTimes = (64- sizeof(int)-sizeof

(float*)-sizeof(DataOnlyAnimKey *))/sizeof(float);
6 static const int keysPerLump = 64/ sizeof(float);
7 float firstStage[numPrefetchedKeyTimes];
8 DataOnlyAnimKey GetKeyAtTimeLinear(float t) {
9 for(int start = 0; start < numPrefetchedKeyTimes; ++start)

{
10 if(firstStage[start] > t) {
11 int l = start*keysPerLump;
12 int h = l + keysPerLump;
13 h = h > numKeys ? numKeys : h;
14 return GetKeyAtTimeLinear(t, l);
15 }
16 }
17 return GetKeyAtTimeLinear(t, numPrefetchedKeyTimes*

keysPerLump);
18 }
19 DataOnlyAnimKey GetKeyAtTimeLinear(float t, int startIndex) {
20 int i = startIndex;
21 while(i < numKeys) {
22 if(keyTime[i] > t) {
23 --i;
24 break;
25 }
26 ++i;
27 }
28 if(i < 0)
29 return keys [0];
30 return keys[i];
31 }
32 };

6.2. DATA-ORIENTED LOOKUP 119

Listing 6.3: Better cache line utilisation

Using the fact that these keys would be loaded into mem-
ory, we give ourselves the opportunity to interrogate some
data for free. In listing 6.3 you can see it uses a linear search
instead of a binary search, and yet it still manages to make
the original binary search look slow by comparison, and we
must assume, as with most things on modern machines, it
is because the path the code is taking is using the resources
better, rather than being better in a theoretical way, or using
fewer instructions.

i5-4430 @ 3.00GHz

Average 13.71ms [Full anim key - linear search]

Average 11.13ms [Full anim key - binary search]

Average 8.23ms [Data only key - linear search]

Average 7.79ms [Data only key - binary search]

Average 1.63ms [Pre-indexed - binary search]

Average 1.45ms [Pre-indexed - linear search]

If the reason for your search is simpler, such as checking
for existence, then there are even faster alternatives. Bloom
filters offer a constant time lookup. Even though it produces
some false positives, it can be tweaked to generate a reason-
able answer hit rate for very large sets. In particular, if you
are checking for which table a row exists in, then bloom fil-
ters work very well, by providing data about which tables to
look in, usually only returning the correct table, but some-
times more than one. The engineers at Google have used
bloom filters to help mitigate the costs of something of a
write-ahead approach with their BigTable technology[?], and
use bloom filters to quickly find out if data requests should
lookup their values in recent change tables, or should go
straight to the backing store.

In relational databases, indexes are added to tables at
runtime when there are multiple queries that could benefit

120 CHAPTER 6. SEARCHING

from their presence. For our data-oriented approach, there
will always be some way to speed up a search but only by
looking at the data. If the data is not already sorted, then
an index is a simple way to find the specific item we need. If
the data is already sorted, but needs even faster access, then
a search tree optimised for the cache line size would help.

Most data isn’t this simple to optimise. But importantly,
when there is a lot of data, it usually is simple to learn pat-
terns from it. A lot of the time, we have to work with spatial
data, but because we use objects, it’s hard to strap on an ef-
ficient spatial reference container after the fact. It’s virtually
impossible to add one at runtime to an externally defined
class of objects.

Adding spatial partitioning when your data is in a simple
data format like rows allows us to generate spatial contain-
ers or lookup systems that will be easy to maintain and op-
timise for each particular situation. Because of the inherent
reusability in data-oriented transforms, we can write some
very highly optimised routines for the high-level program-
mers.

6.3 Finding lowest or highest is a sort-
ing problem

In some circumstances, you don’t even really need to search.
If the reason for searching is to find something within a
range, such as finding the closest food, or shelter, or cover,
then the problem isn’t really one of searching, but one of
sorting. In the first few runs of a query, the search might
literally do a real search to find the results, but if it’s run
often enough, there is no reason not to promote the query
to a runtime-updating sorted-subset of some other tables’
data. If you need the nearest three elements, then you keep
a sorted list of the nearest three elements, and when an el-
ement has an update, insertion or deletion, you can update

6.4. FINDING RANDOM 121

the sorted three with that information. For insertions or
modifications which bring elements that are not in the set
closer, you can check whether the element is closer and pop
the lowest before adding the new element to the sorted best.
If there is a deletion or a modification that makes one in the
sorted set a contender for elimination, a quick check of the
rest of the elements to find a new best set might be neces-
sary. If you keep a larger than necessary set of best values,
however, then you might find this never happens.

1 Array <int > bigArray;
2 Array <int > bestValue;
3 const int LIMIT = 3;
4
5 void AddValue(int newValue) {
6 bigArray.push(newValue);
7 bestValue.sortedinsert(newValue);
8 if(bestValue.size() > LIMIT)
9 bestValue.erase(bestValue.begin());

10 }
11 void RemoveValue(int deletedValue) {
12 bigArray.remove(deletedValue);
13 bestValue.remove(deletedValue);
14 }
15 int GetBestValue () {
16 if(bestValue.size()) {
17 return bestValue.top();
18 } else {
19 int best = bigArray.findbest ();
20 bestvalue.push(best);
21 return best;
22 }
23 }

Listing 6.4: keeping more than you need

The trick is to find, at runtime, the best value to use that
covers the solution requirement. The only way to do that is
to check the data at runtime. For this, either keep logs or
run the tests with dynamic resizing based on feedback from
the table’s query optimiser.

6.4 Finding random is a hash/tree is-
sue

For some tables, the values change very often. For a tree
representation to be high performance, it’s best not to have
a high number of modifications as each one could trigger the

122 CHAPTER 6. SEARCHING

need for a rebalance. Of course, if you do all your modifica-
tions in one stage of processing, then rebalance, and then
all your reads in another, then you’re probably going to be
okay still using a tree.

The C++ standard template library implementation of
map for your compiler might not work well even when com-
mitting all modifications in one go, but a more cache line
aware implementation of a tree, such as a B-tree, may help
you. A B-tree has much wider nodes, and therefore is much
shallower. It also has a much lower chance of making mul-
tiple changes at once under insert and delete operations, as
each node has a much higher capacity. Typically, you will
see some form of balancing going on in a red-black tree every
other insert or delete, but in most B-tree implementations,
you will have tree rotations occur relative to the width of
the node, and nodes can be very wide. For example, it’s not
unusual to have nodes with 8 child nodes.

If you have many different queries on some data, you can
end up with multiple different indexes. How frequently the
entries are changed should influence how you store your in-
dex data. Keeping a tree around for each query could become
expensive, but would be cheaper than a hash table in many
implementations. Hash tables become cheaper where there
are many modifications interspersed with lookups, trees are
cheaper where the data is mostly static, or at least hangs
around in one form for a while over multiple reads.

When the data becomes constant, a perfect hash can
trump a tree. Perfect hash tables use pre-calculated hash
functions to generate an index and don’t require any space
other than what is used to store the constants and the array
of pointers or offsets into the original table. If you have the
time, then you might find a perfect hash that returns the
actual indexes. It’s not often you have that long though.

For example, what if we need to find the position of some-
one given their name? The players won’t normally be sorted
by name, so we need a name to player lookup. This data is

6.4. FINDING RANDOM 123

mostly constant during the game so would be better to find a
way to directly access it. A single lookup will almost always
trump following a pointer chain, so a hash to find an array
entry is likely to be the best fit. Consider a normal hash ta-
ble, where each slot contains either the element you’re look-
ing for, or a different element, and a way of calculating the
next slot you should check. If you know you want to do one
and only one lookup, you can make each of your hash buck-
ets as large as a cache line. That way you can benefit from
free memory lookups.

124 CHAPTER 6. SEARCHING

Chapter 7

Sorting

For some subsystems, sorting is a highly important func-
tion. Sorting the primitive render calls so they render from
front to back for opaque objects can have a massive impact
on GPU performance, so it’s worth doing. Sorting the prim-
itive render calls so they render from back to front for alpha
blended objects is usually a necessity. Sorting sound chan-
nels by their amplitude over their sample position is a good
indicator of priority.

Whatever you need to sort for, make sure you need to sort
first, as usually, sorting is a highly memory intense busi-
ness.

7.1 Do you need to?

There are some algorithms which seem to require sorted
data, but don’t, and some which require sorted data but
don’t seem to. Be sure you know whether you need to before
you make any false moves.

A common use of sorting in games is in the render pass

125

126 CHAPTER 7. SORTING

where some engine programmers recommend having all your
render calls sorted by a high bit count key generated from
a combination of depth, mesh, material, shader, and other
flags such as whether the call is alpha blended. This then
allows the renderer to adjust the sort at runtime to get the
most out of the bandwidth available. In the case of the ren-
dering list sort, you could run the whole list through a gen-
eral sorting algorithm, but in reality, there’s no reason to
sort the alpha blended objects with the opaque objects, so
in many cases you can take a first step of putting the list
into two separate buckets, and save some work overall. Also,
choose your sorting algorithm wisely. With opaque objects,
the most important part is usually sorting by textures then
by depth, but that can change with how much your fill rate is
being trashed by overwriting the same pixel multiple times.
If your overdraw doesn’t matter too much but your texture
uploads do, then you probably want to radix sort your calls.
With alpha blended calls, you just have to sort by depth, so
choose an algorithm which handles your case best. Be aware
of how accurately you need your data to be sorted. Some
sorts are stable, others unstable. Unstable sorts are usually
a little quicker. For analogue ranges, a quick sort or a merge
sort usually offer slow but guaranteed accurate sorting. For
discrete ranges of large n, a radix sort is very hard to beat. If
you know your range of values, then a counting sort is a very
fast two pass sort, for example, sorting by material, shader,
or other input buffer index.

When sorting, it’s also very important to be aware of algo-
rithms that can sort a range only partially. If you only need
the lowest or highest n items of an m long array, you can use
a different type of algorithm to find the nth item, then sort all
the items greater or less than the returned pivot. In some se-
lection algorithms you will end with some guarantees about
the data. Notably, quickselect will result in the nth item by
sorting criteria residing in the nth position. Once complete,
all items either side remain unsorted in their sub-ranges,
but are guaranteed to be less than or more than the pivot,
depending on the side of the pivot they fall.

7.1. DO YOU NEED TO? 127

If you have a general range of items which need to be
sorted in two different ways, you can either sort with a spe-
cialised comparison function in a one-hit sort, or you can
sort hierarchically. This can be beneficial when the order of
items is less important for a subset of the whole range. The
render queue is still a good example. If you split your sort
into different sub-sorts, it makes it possible to profile each
part of the sort, which can lead to beneficial discoveries.

You don’t need to write your own algorithms to do this
either. Most of the ideas presented here can be implemented
using the STL, using the functions in algorithms. You
can use std::partial sort to find and sort the first n el-
ements, you can use std::nth element to find the nth value
as if the container was sorted. Using std::partition and
std::stable partition allow you to split a range by a criteria,
effectively sorting a range into two sub-ranges.

It’s important to be aware of the contracts of these algo-
rithms, as something as simple as the erase/remove process
can be very expensive if you use it without being aware that
remove will shuffle all your data down, as it is required to
maintain order. If there was one algorithm you should add to
your collection, it would be your own version of remove which
does not guarantee maintaining order. Listing 7.1 shows one
such implementation.

1 template <class It, class T>
2 It unstable_remove(It begin , It end , const T& value)
3 {
4 begin = find(begin , end , value);
5 if (begin != end) {
6 --end;
7 *begin = move(*end);
8 }
9 return end;

10 }

Listing 7.1: A basic implementation of unstable remove

128 CHAPTER 7. SORTING

7.2 Maintain by insertion sort or par-
allel merge sort

Depending on what you need the list sorted for, you could
sort while modifying. If the sort is for some AI function that
cares about priority, then you may as well insertion sort as
the base heuristic commonly has completely orthogonal in-
puts. If the inputs are related, then a post insertion table
wide sort might be in order, but there’s little call for a full-
scale sort.

If you really do need a full sort, then use an algorithm
which likes being parallel. Merge sort and quick sort are
somewhat serial in that they end or start with a single
thread doing all the work, but there are variants which
work well with multiple processing threads, and for small
datasets there are special sorting network techniques which
can be faster than better algorithms just because they fit the
hardware so well1.

7.3 Sorting for your platform

Always remember that in data-oriented development you
must look to the data for information before deciding which
way you’re going to write the code. What does the data look
like? For rendering, there is a large amount of data with dif-
ferent axes for sorting. If your renderer is sorting by mesh
and material, to reduce vertex and texture uploads, then the
data will show that there are a number of render calls which
share texture data, and a number of render calls which
share vertex data. Finding out which way to sort first could
be figured out by calculating the time it takes to upload a
texture, how long it takes to upload a mesh, how many ex-

1Tony Albrecht proves this point in his article on sorting networks
http://seven-degrees-of-freedom.blogspot.co.uk/2010/07/question-of-
sorts.html

7.3. SORTING FOR YOUR PLATFORM 129

tra uploads are required for each, then calculating the total
scene time, but mostly, profiling is the only way to be sure.
If you want to be able to profile and get feedback quickly
or allow for runtime changes in case your game has such
varying asset profiles that there is no one solution to fit all,
having some flexibility of sorting criteria is extremely useful
and sometimes necessary. Fortunately, it can be made just
as quick as any inflexible sorting technique, bar a small
setup cost.

Radix sort is the fastest serial sort. If you can do it, radix
sort is very fast because it generates a list of starting points
for data of different values in a first pass, then operates using
that data in a second pass. This allows the sorter to drop
their contents into containers based on a translation table, a
table that returns an offset for a given data value. If you build
a list from a known small value space, then radix sort can
operate very fast to give a coarse first pass. The reason radix
sort is serial, is that it has to modify the table it is reading
from in order to update the offsets for the next element that
will be put in the same bucket. If you ran multiple threads
giving them part of the work each, then you would find they
were non-linearly increasing in throughput as they would
be contending to write and read from the same memory, and
you don’t want to have to use atomic updates in your sorting
algorithm.

It is possible to make this last stage of the process parallel
by having each sorter ignore any values it reads which are
outside its working set, meaning each worker reads through
the entire set of values gathering for their bucket, but there is
still a small chance of non-linear performance due to having
to write to nearby memory on different threads. During the
time the worker collects the elements for its bucket, it could
be generating the counts for the next radix in the sequence,
only requiring a summing before use in the next pass of the
data, mitigating the cost of iterating over the whole set with
every worker.

130 CHAPTER 7. SORTING

If your data is not simple enough to radix sort, you might
be better off using a merge sort or a quicksort, but there
are other sorts that work very well if you know the length
of your sortable buffer at compile time, such as sorting net-
works. Through merge-sort is not itself a concurrent algo-
rithm, the many early merges can be run in parallel, only
the final merge is serial, and with a quick pre-parse of the
to-be-merged data, you can finalise with two threads rather
than one by starting from both ends (you need to make sure
the mergers don’t run out of data). Though quick sort is not
a concurrent algorithm each of the substages can be run in
parallel. These algorithms are inherently serial, but can be
turned into partially parallelisable algorithms with O(log n)
latency.

When your n is small enough, a traditionally good tech-
nique is to write an in-place bubble sort. The algorithm is
so simple, it is hard to write wrong, and because of the small
number of swaps required, the time taken to set up a bet-
ter sort could be better spent elsewhere. Another argument
for rewriting such trivial code is that inline implementations
can be small enough for the whole of the data and the algo-
rithm to fit in cache2. As the negative impact of the ineffi-
ciency of the bubble sort is negligible over such a small n, it
is hardly ever frowned upon to do this. In some cases, the
fact that there are fewer instructions can be more important
than the operational efficiency, as instruction eviction could
cost more than the time saved by the better algorithm. As
always, measure so you can be certain.

If you’ve been developing data-oriented, you’ll have a
transform which takes a table of n and produces the sorted
version of it. The algorithm doesn’t have to be great to be
better than bubble sort, but notice it doesn’t cost any devel-
opment time to use a better algorithm as the data is in the
right shape already. Data-oriented development naturally

2It might be wise to have some inline sort function templates in your own
utility header so you can utilise the benefits of miniaturisation, but don’t
drop in a bloated std::sort

7.3. SORTING FOR YOUR PLATFORM 131

leads us to reuse of good algorithms.

When looking for the right algorithm, it’s worth knowing
about more than you are presented during any coursework,
and look into the more esoteric forms. For sorting, some-
times you want an algorithm that always sorts in the same
amount of time, and when you do, you can’t use any of the
standard quick sorts, radix sorts, bubble or other. Merge
sort tends to have good performance, but to get truly sta-
ble times when sorting, you may need to resort to sorting
networks.

Sorting networks work by implementing the sort in a
static manner. They have input data and run swap if nec-
essary functions on pairs of values of the input data before
outputting the final. The simplest sorting network is two
inputs.

A // //

��

// A′

B // //

BB

// B′

If the values entering are in order, the sorting crossover
does nothing. If the values are out of order, then the sorting
crossover causes the values to swap. This can be imple-
mented as branch-free writes:

a’ <= MAX(a,b)

b’ <= MIN(a,b)

This is fast on any hardware. The MAX and MIN functions
will need different implementations for each platform and
data type, but in general, branch-free code executes a little
faster than code that includes branches. In most current
compilers, the MIN and MAX functions will be promoted to
intrinsics if they can be, but you might need to finesse the

132 CHAPTER 7. SORTING

data so the value is part of the key, so it is sorted along with
the keys.

Introducing more elements:

A // 1 //

��

2 //

��

3 // // A′

B // //

��

//

BB

��

// // B′

C // //

II

//

��

BB

// // C ′

D // //

II

//

BB

// // D′

What you may notice here is that the critical path is not
long (just three stages in total), the first stage is two con-
current sortings of A/C, and B/D pairs. The second stage,
sorting A/B, and C/D pairs. The final cleanup sorts the B/C
pair. As these are all branch-free functions, the performance
is regular over all data permutations. With such a regular
performance profile, we can use the sort in ways where the
variability of sorting time length gets in the way, such as
just-in-time sorting for subsections of rendering. If we had
radix sorted our renderables, we can network sort any final
required ordering as we can guarantee a consistent timing.

a’ <= MAX(a,c)

b’ <= MIN(b,d)

c’ <= MAX(a,c)

d’ <= MIN(b,d)

a’’ <= MAX(a’,b’)

b’’ <= MIN(a’,b’)

c’’ <= MAX(c’,d’)

d’’ <= MIN(c’,d’)

b’’’ <= MIN(b’’,c’’)

c’’’ <= MAX(b’’,c’’)

7.3. SORTING FOR YOUR PLATFORM 133

Sorting networks are somewhat like predication, the
branch-free way of handling conditional calculations. Be-
cause sorting networks use a min/max function, rather
than a conditional swap, they gain the same benefits when
it comes to the actual sorting of individual elements. Given
that sorting networks can be faster than radix sort for cer-
tain implementations, it goes without saying that for some
types of calculation, predication, even long chains of it, will
be faster than code that branches to save processing time.
Just such an example exists in the Pitfalls of Object Oriented
Programming[?] presentation, concluding that lazy evalua-
tion costs more than the job it tried to avoid. I have no hard
evidence for it yet, but I believe a lot of AI code could benefit
the same, in that it would be wise to gather information even
when you are not sure you need it, as gathering it might be
quicker than deciding not to. For example, seeing if someone
is in your field of vision, and is close enough, might be small
enough that it can be done for all AI rather than just the
ones requiring it, or those that require it occasionally.

134 CHAPTER 7. SORTING

Chapter 8

Optimisations and
Implementations

When optimising software, you have to know what is causing
the software to run slower than you need it to run. We find in
most cases, data movement is what really costs us the most.
Data movement is where most of the energy goes when pro-
cessing data. Calculating solutions to functions, or running
an algorithm on the data uses less energy. It is the fulfill-
ment of the request for data in the first place that appears
to be the largest cost. As this is most definitely true about
our current architectures, we find implicit or calculable in-
formation is often much more useful than cached values or
explicit state data.

If we start our game development by organising our data
into arrays, we open ourselves up to many opportunities for
optimisation. Starting with such a problem agnostic layout,
we can pick and choose from tools we’ve created for other
tasks, at worst elevating the solution to a template or a strat-
egy, before applying it to both the old and new use cases.

In Out of the Tar Pit [?], it’s considered poor form to add

135

136 CHAPTER 8. OPTIMISATIONS

state and complexity for the sake of performance until late
in the development of the solution. By using arrays to solve
the problem, and side-effect free transforms on those tables,
performance improvements can be made across systems in
general. The improvements can be applied at many sites in
the program with little fear of incompatibility, and a convic-
tion that we’re not adding state, but augmenting the lan-
guage in which we work.

The bane of many projects, and the cause of their late-
ness, has been the insistence on not doing optimisation pre-
maturely. The reason optimisation at late stages is so dif-
ficult is that many pieces of software are built up with in-
stances of objects everywhere, even when not needed. Many
issues with object-oriented design are caused by the idea
that an instance is the unit of processing. Object-oriented
development practices tend to assume the instance is the
unit on which code will work, and techniques and standards
of practice treat collections of objects as collections of indi-
viduals.

When the basic assumption is that an object is a unique
and special thing with its own purpose, then the instructions
to carry out what it needs to do, will necessarily be selected
in some way dependent on the object. Accessing instructions
via the vtable pointer is the usual method by which opera-
tions are selected. The greater threat is when five, ten, or
a hundred individual instances, which could have been rep-
resented as a group, a swarm, or merely an increment on a
value, are processed as a sequence of individuals. There are
many cases where an object exists just because it seemed
to match the real world concept it was trying to represent at
the scale of the developer implementing it, rather than be-
cause it needed to function as a unique individual element
of which the user would be aware. It’s easy to get caught up
implementing features from the perspective of what they are,
rather than how they are perceived.

8.1. WHEN SHOULD WE OPTIMISE? 137

8.1 When should we optimise?

When should optimisation be done? When is it truly prema-
ture? The answer lies in data of a different sort. Premature
optimisation is when you optimise something without know-
ing whether it will make a difference. If you attempt to op-
timise something because in your mind it will “speed things
up a bit”, then it can be considered premature, as it’s not
apparent there is anything to optimise.

Let’s be clear here, without the data to show that a game
is running slow, or running out of memory, then all optimisa-
tions are premature. If an application has not been profiled,
but feels slow, sluggish, or erratic, then anything you do can-
not be objectively defined as improving it, and any improve-
ments you attempt to do cannot be anything but premature
optimisations. The only way to stop premature optimisation
is to start with real data. If your application seems slow, and
has been profiled, and what is considered unacceptable is a
clearly defined statement based on data, then anything you
do to improve the solution will not be premature, because it
has been measured, and can be evaluated in terms of failure,
success, or progress.

Given that we think we will need to optimise at some
point, and we know optimising without profiling is not ac-
tually optimising, the next question becomes clear. When
should you start profiling? When should you start work
on your profiling framework? How much game content is
enough to warrant testing performance? How much of the
game’s mechanics should be in before you start testing them
for performance spikes?

Consider a different question. Is the performance of your
final product optional? Would you be able to release the
game if you knew it had sections which ran at 5fps on cer-
tain hardware? If you answer that it’s probably okay for your
game to run at around 30fps, then that’s a metric, even if it’s
quite imprecise. How do you know your game already isn’t

138 CHAPTER 8. OPTIMISATIONS

running at 5fps on one of your target audience’s hardware
configurations? If you believe there are lower limits to frame-
rate, and upper limits to your memory usage, if there is an
expected maximum time for a level to load before it’s just
assumed to be stuck, or a strong belief the game should at
least not kill the battery on a phone when it’s running, then
you have, in at least some respect, agreed that performance
is not optional.

If performance is not optional, and it requires real work to
optimise, then start asking yourself a different set of ques-
tions. How long can you delay profiling? How much art or
other content can you afford to redo? How many features
are you willing to work on without knowing if they can be
included in the final game? How long can you work with-
out feedback on whether any of what you have done, can be
included in the final product?

8.2 Feedback

Not knowing you are writing poor performance code doesn’t
just hurt your application. By not having feedback on their
work, developers cannot get better, and myths and tech-
niques which do not work are reinforced and perpetuated.
Daniel Kahneman, in his book Thinking, Fast and Slow[?],
provides some evidence that you can learn well from imme-
diate reactions, but cannot easily pick up skills when the
feedback is longer in arriving. In one part, he puts it in
terms of psychotherapists being able to acquire strong intu-
itive skills in patient interaction, as they are able to observe
the patient’s immediate reactions, but they are less likely to
be able to build strong intuitions for identifying the appro-
priate treatment for a patient, as the feedback is not always
available, not always complete, and often delayed. Choosing
to work without feedback would make no sense, but there
is little option for many game developers, as third party en-
gines offer very little in the way of feedback mechanisms for

8.2. FEEDBACK 139

those learning or starting out on their projects. They do not
provide mechanisms to apply budgets to separate aspects
of their engines, other than the coarse grain of CPU, GPU,
Physics, render, etc. They provide lots of tools to help fix per-
formance when it has been identified as an issue, but can
often provide feedback which is incomplete, or inaccurate
to the final form of the product, as built-in profiling tools
are not always available in fully optimised publishing ready
builds.

You must get feedback on what is going on, as otherwise
there is a risk the optimisations you will need to do will con-
sume any polish time you have. Make sure your feedback
is complete and immediate where possible. Adding metrics
on the status of the performance of your game will help with
this. Instant feedback on success or failure of optimisations
helps mitigate the sunk cost fallacy that can intrude on ra-
tional discourse about a direction taken. If a developer has
a belief in a way of doing things, but it’s not helping, then it’s
better to know sooner rather than later. Even the most en-
trenched in their ways are more approachable with raw data,
as curiosity is a good tonic for a developer with a wounded
ego. If you haven’t invested a lot of time and effort into an
approach, then the feedback is even easier to integrate, as
you’re going to be more willing to throw the work away and
figure out how to do it differently.

You also need to get the feedback about the right thing. If
you find you’ve been optimising your game for a silky smooth
frame rate and you think you have an average frame rate of
60fps, and yet your customers and testers keep coming back
with comments about nasty frame spikes and dropout, then
it could be that you’re not profiling the right thing, or not
profiling the right way. Sometimes it can be that you have
to profile a game while it is being played. Sometimes it can
be as simple as remembering to profile frame times on a per
frame basis, not just an average.

Profiling doesn’t have to be about frame rate. A frame

140 CHAPTER 8. OPTIMISATIONS

isn’t a slow thing, something in that frame was slow. An
old-fashioned, but powerful way to develop software, is to
provide budgets to systems and departments. We’re not talk-
ing about financial budgets here, but instead time, memory,
bandwidth, disk space, or other limits which affect the final
product directly. If you give your frame a budget of 16ms, and
you don’t go over, you have a 60fps game, no ifs, no buts. If
you decide you want to maintain good level load times, and
set yourself a budget of 4 seconds to load level data, then as
long as you don’t go over, no one is going to complain about
your load times.

Beyond games, if you have a web-based retail site, you
might want to be aware of latency, as it has an effect on your
users. It was revealed in a presentation in 2008 by Greg
Linden that for every additional 100ms of latency, Amazon
would experience a loss of 1% in sales. It was also revealed
that Google had statistics showing a 20% drop in site traf-
fic was experienced when they added just half a second of
latency to page generation. Most scarily of all was a com-
ment from TABB group in 2008, where they mention com-
pany wrecking levels of costs.

TABB Group estimates that if a broker’s electronic
trading platform is 5 milliseconds behind the com-
petition, it could lose at least 1% of its flow; that’s
$4 million in revenues per millisecond. Up to 10
milliseconds of latency could result in a 10% drop
in revenues. From there it gets worse. If a broker
is 100 milliseconds slower than the fastest broker,
it may as well shut down its FIX engine and be-
come a floor broker.

1

If latency, throughput, frame times, memory usage, or
another resource is your limit, then budget for it. What

1From THE VALUE OF A MILLISECOND: FINDING THE OPTIMAL SPEED
OF A TRADING INFRASTRUCTURE by Viraf (Willy) Reporter

8.2. FEEDBACK 141

would cripple your business? Are you measuring it? How
long can you go without checking that you’re not already out
of business?

8.2.1 Know your limits

Building budgets into how you work means, you can set re-
alistic budgets for systems early and have them work at a
certain level throughout development knowing they will not
cause grief later in development. On a project without bud-
gets, frame spikes may only become apparent near release
dates as it is only then that all systems are coming together
to create the final product. A system which was assumed to
be quite cheap, could cause frame spikes in the final prod-
uct, without any evidence being previously apparent. When
you finally find out which system causes the spikes, it may
be that it was caused by a change from a very long time ago,
but as resources were plentiful in the early times of develop-
ment on the project, the spikes caused by the system would
have gone completely unnoticed, flying under the radar. If
you give your systems budgets, violations can be recorded
and raised as issues immediately. If you do this, then prob-
lems can be caught at the moment they are created, and the
cause is usually within easy reach.

Build or get yourself a profiler that runs all the time. En-
sure your profiler can report the overall state of the game
when the frame time goes over budget. It’s highly benefi-
cial to make it respond to any single system going over bud-
get. Sometimes you need the data from a number of frames
around when a violation occurred to really figure out what is
going on. If you have AI in your game, consider running con-
tinuous testing to capture performance issues as fast as your
build machine churns out testable builds. In all cases, un-
less you’re letting real testers run your profiler, you’re never
going to get real world profiling data. If real testers are going
to be using your profiling system, it’s worth considering how
you gather data from it. If it’s possible for you, see if you can

142 CHAPTER 8. OPTIMISATIONS

get automatically generated profile data sent back to an an-
alytics or metrics server, to capture issues without requiring
user intervention.

8.3 A strategy for optimisation

You can’t just open up an editor and start optimising. You
need a strategy. In this section, we walk through just one
such strategy. The steps have parallels in industries outside
game development, where large companies such as Toyota
optimise as part of their business model. Toyota has re-
fined their techniques for ensuring maximum performance
and growth, and the Toyota Production System has been the
driving idea behind the Lean manufacturing method for the
reduction of waste. There are other techniques available, but
this subset of steps shares much with many of them.

8.3.1 Define the problem

Define your problem. Find out what it is you think is bad.
Define it in terms of what is factual, and what is assumed to
be a final good solution. This can be as simple as saying the
problem is that the game is running at 25fps, and you need
it to be at 30fps. Stick to clear, objective language.

It’s important to not include any guesses in this step, so
statements which include ideas on what or how to optimise
should be prohibited. Consider writing it from the point of
view of someone using the application, not from the perspec-
tive of the developer. This is sometimes called quality crite-
ria, or customer requirements.

8.3. A STRATEGY 143

8.3.2 Measure

Measure what you need to measure. Unlike measuring ran-
domly, targeted measuring is better for figuring out what is
actually going on, as you are less likely to find a pattern in
irrelevant data. P-hacking or data dredging can lead you to
false convictions about causes of problems.

At this stage, you also need to get an idea of the quality
of your measurements. Run your tests, but then run them
again to make sure they’re reproducible. If you can’t repro-
duce the same results before you have made changes, then
how are you going to be sure the changes you have made,
have had any effect?

8.3.3 Analyse

The first step in most informal optimisation strategies: the
guessing phase. This is when you come up with ideas about
what could be the problem and suggest different ways to
tackle the problem. In the informal optimisation process,
you pick the idea which seems best, or at least the most fun
to implement.

In this more formal strategy, we analyse what we have
measured. Sometimes it’s apparent from this step that the
measurements didn’t provide enough direction to come up
with a good optimisation plan. If your analysis proves you
don’t have good data, the next step should be to rectify your
ability to capture useful data. Don’t tackle optimisation
without understanding the cost associated with failing to
understand the problem.

This is also the stage to make predictions. Estimate the
expected impact of an improvement you plan to make. Don’t
just lightly guess, have a really good go at guessing with some
number crunching. You won’t be able to do it after the im-
plementation, as you will have too much knowledge to make

144 CHAPTER 8. OPTIMISATIONS

an honest guess. You will be suffering what some call the
curse of knowledge. By doing this, you can learn about how
good you are at estimating the impact of your optimisations,
but also, you can get an idea of the relative impact of your
change before you begin work.

8.3.4 Implement

The second step in most informal optimisation strategies; the
implementation phase. This is when you make the changes
you think will fix the problem.

If possible, do an experimental implementation of the op-
timisation to your solution. A program is a solution to a
problem, it is a strategy to solve a data transform, and you
should remember that when designing your experiment.

Before you consider the local version to be working, and
indeed, worth working on, you must prove it’s useful. Check
the measurements you get from the localised experiment are
in line with your expectations as measured from the inte-
grated version.

If your optimisation is going to be perfect first time, then
the experimental implementation will only be used as a proof
that the process can be repeated and can be applicable in
other circumstances. It will only really be useful as a teach-
ing tool for others, in helping them understand the costs of
the original process and the expected improvement under
similar constraints.

If you are not sure the optimisation will work out first
time, then the time saved by not doing a full implementation
can be beneficial, as a localised experiment can be worked
on faster. It can also be a good place to start when trying to
build an example for third parties to provide support, as a
smaller example of the problem will be easier to communi-
cate through.

8.3. A STRATEGY 145

8.3.5 Confirm

This step is critical in more ways than expected. Some may
think it an optional step, but it is essential for retaining the
valuable information you will have generated while doing the
optimisation.

Create a report of what you have done, and what you have
found. The benefits of doing this are twofold. First, you have
the benefit of sharing knowledge of a technique for optimi-
sation, which clearly can help others hitting the same kind
of issue. The second is that creating the report can identify
any errors of measurement, or any steps which can be tested
to ensure they were actually pertinent to the final changes
committed.

In a report, others can point out any illogical leaps of rea-
soning, which can lead to even better understanding and can
also help deny any false assumptions from building up in
your understanding of how the machine really works. Writ-
ing a report can be a powerful experience that will give you
valuable mental building blocks and the ability to better ex-
plain what happens under certain conditions.

8.3.6 Summary

Above all things, keep track. If you can, do your optimisa-
tion work in isolation of a working test bed. Make sure your
timings are reproducible even if you have to get up to date
with the rest of the project due to having to work on a bug
or feature. Making sure you keep track of what you are do-
ing with notes can help you understand what was in your
head when you made earlier changes, and what you might
not have thought about.

It is important to keep trying to improve your ability to
see; to observe. You cannot make measurable progress if
you cannot measure, and you cannot tell you have made an

146 CHAPTER 8. OPTIMISATIONS

improvement without tools for identifying the improvement.
Improve your tools for measuring when you can. Look for
ways to look. Whenever you find that there was no way to
know with the tools you had available, either find the tools
you need or if you can’t find them, attempt to make them
yourself. If you cannot make them yourself, petition others,
or commission someone else to create them. Don’t give in
to hopeful optimisations, because they will teach you bad
habits and you will learn false facts from random chance
proving you right.

8.4 Tables

To keep things simple, advice from multiple sources indi-
cate that keeping your data as vectors has a lot of positive
benefits. There are some reasons to use something other
than the STL, but learn its quirks, and you can avoid a lot
of the issues. Whether you use std::vector, or roll your own
dynamically sized array, it is a good starting place for any
future optimisations. Most of the processing you will do will
be reading an array, transforming one array into another, or
modifying a table in place. In all these cases, a simple array
will suffice for most tasks.

Moving to arrays is good, moving to structure-of-arrays
can be better. Not always. It’s very much worth considering
the access patterns for your data. If you can’t consider the
access patterns, and change is costly, choose based on some
other criteria, such as readability.

Another reason to move away from arrays of objects, or
arrays of structures, is to keep the memory accesses spe-
cific to their tasks. When thinking about how to structure
your data, it’s important to think about what data will be
loaded and what data will be stored. CPUs are optimised for
certain patterns of memory activity. Many CPUs have a cost
associated with changing from read operations to write oper-

8.4. TABLES 147

ations. To help the CPU not have to transition between read
and write, it can be beneficial to arrange writing to mem-
ory in a very predictable and serial manner. An example of
hot cold separation that doesn’t take into account the impor-
tance of writing can be seen in the example code in listing
8.1 that attempts to update values which are used both for
read and write, but are close neighbours of data which is
only used for reading.

1 struct PosInfo
2 {
3 vec3 pos;
4 vec3 velocity;
5 PosInfo ():
6 pos (1.0f, 2.0f, 3.0f),
7 velocity (4.0f, 5.0f, 6.0f)
8 {}
9 };

10
11 struct nodes
12 {
13 std::vector <PosInfo > posInfos;
14 std::vector <vec3 > colors;
15 std::vector <LifetimeInfo > lifetimeInfos;
16 } nodesystem;
17
18 // ...
19
20 for (size_t times = 0; times < trialCount; times ++)
21 {
22 std::vector <PosInfo >& posInfos = nodesystem.posInfos;
23 for (size_t i = 0; i < node_count; ++i)
24 {
25 posInfos[i].pos += posInfos[i]. velocity * deltaTime;
26 }
27 }

Listing 8.1: Mixing hot reads with hot and cold writes

The code in listing 8.2 shows a significant performance
improvement.

1 struct nodes
2 {
3 std::vector <vec3 > positions;
4 std::vector <vec3 > velocities;
5 std::vector <vec3 > colors;
6 std::vector <LifetimeInfo > lifetimeInfos;
7 };
8 // ...
9 nodes nodesystem;

10 // ...
11 for (size_t times = 0; times < trialCount; times ++)
12 {
13 for (size_t i = 0; i < node_count; ++i)
14 {
15 nodesystem.positions[i] += nodesystem.velocities[i] *

deltaTime;
16 }
17 }

Listing 8.2: Ensuring each stream is continuous

For the benefit of your cache, structs of arrays can be

148 CHAPTER 8. OPTIMISATIONS

more cache-friendly if the data is not strongly related both
for reading and writing. It’s important to remember this is
only true when the data is not always accessed as a unit, as
one advocate of the data-oriented design movement assumed
that structures of arrays were intrinsically cache-friendly,
then put the x,y, and z coordinates in separate arrays of
floats. It is possible to benefit from having each element in
its own array when you utilise SIMD operations on larger
lists. However, if you need to access the x,y, or z of an ele-
ment in an array, then you more than likely need to access
the other two axes as well. This means that for every ele-
ment you will be loading three cache lines of float data, not
one. If the operation involves a lot of other values, then this
may overfill the cache. This is why it is important to think
about where the data is coming from, how it is related, and
how it will be used. Data-oriented design is not just a set
of simple rules to convert from one style to another. Learn
to see the connections between data. In this case, we see
that in some circumstances, it’s better to keep your vector
as three or four floats if it’s not commonly used as a value in
an operation that will be optimised with SIMD instructions.

There are other reasons why you might prefer to not store
data in trivial SoA format, such as if the data is commonly
subject to insertions and deletions. Keeping free lists around
to stop deletions from mutating the arrays can help alleviate
the pressure, but being unable to guarantee every element
requires processing moves away from simple homogeneous
transformations which are often the point of such data lay-
out changes.

If you use dynamic arrays, and you need to delete el-
ements from them, and these tables refer to each other
through some IDs, then you may need a way to splice the
tables together in order to process them as you may want
to keep them sorted to assist with zipping operations. If the
tables are sorted by the same value, then it can be written
out as a simple merge operation, such as in listing 8.3.

1 ProcessJoin(Func functionToCall) {
2 TableIterator A = t1Table.begin();

8.4. TABLES 149

3 TableIterator B = t2Table.begin();
4 TableIterator C = t3Table.begin();
5 while(!A.finished && !B.finished && !C.finished) {
6 if(A == B && B == C) {
7 functionToCall(A, B, C);
8 ++A; ++B; ++C;
9 } else {

10 if(A < B || A < C) ++A;
11 if(B < A || B < C) ++B;
12 if(C < A || C < B) ++C;
13 }
14 }
15 }

Listing 8.3: Zipping together multiple tables by merging

This works as long as the == operator knows about the ta-
ble types and can find the specific column to check against,
and as long as the tables are sorted based on this same col-
umn. But what about the case where the tables are zipped
together without being the sorted by the same columns? For
example, if you have a lot of entities which refer to a mod-
elID, and you have a lot of mesh-texture combinations which
refer to the same modelID, then you will likely need to zip to-
gether the matching rows for the orientation of the entity,
the modelID in the entity render data, and the mesh and
texture combinations in the models. The simplest way to
program a solution to this is to loop through each table in
turn looking for matches such as in Listing 8.4. This so-
lution, though simple to write, is incredibly inefficient, and
should be avoided where possible. But as with all things,
there are exceptions. In some situations, very small tables
might be more efficient this way, as they will remain resident,
and sorting them could cost more time.

1 ProcessJoin(Func functionToCall) {
2 for(auto A : orientationTable) {
3 for(auto B : entityRenderableTable) {
4 if(A == B) {
5 for(auto C : meshAndTextureTable) {
6 if(A == C) {
7 functionToCall(A, B, C);
8 }
9 }

10 }
11 }
12 }
13 }

Listing 8.4: Join by looping through all tables

Another thing you have to learn about when working with
data which is joined on different columns is the use of join

150 CHAPTER 8. OPTIMISATIONS

strategies. In databases, a join strategy is used to reduce the
total number of operations when querying across multiple
tables. When joining tables on a column (or key made up of
multiple columns), you have a number of choices about how
you approach the problem. In our trivial coded attempt, you
can see we simply iterate over the whole table for each table
involved in the join, which ends up being O(nmo) or O(n3)for
roughly same size tables. This is no good for large tables, but
for small ones it’s fine. You have to know your data to decide
whether your tables are big2 or not. If your tables are too big
to use such a trivial join, then you will need an alternative
strategy.

You can join by iteration, or you can join by lookup3, or
you can even join once and keep a join cache around. Keep-
ing the join cache around makes it appear as if you can op-
erate on the tables as if they are sorted in multiple ways at
the same time.

It’s perfectly feasible to add auxiliary data which will allow
for traversal of a table in a different order. We add join caches
in the same way databases allow for any number of indexes
into a table. Each index is created and kept up to date as the
table is modified. In our case, we implement each index the
way we need to. Maybe some tables are written to in bursts,
and an insertion sort would be slow, it might be better to
sort on first read, or trash the whole index on modify. In
other cases, the sorting might be better done on write, as
the writes are infrequent, or always interleaved with many
reads.

2dependent on the target hardware, how many rows and columns, and
whether you want the process to run without trashing too much cache

3often a lookup join is called a join by hash, but as we know our data, we
can use better row search algorithms than a hash when they are available

8.5. TRANSFORMS 151

8.5 Transforms

Taking the concept of schemas a step further, a static
schema definition can allow for a different approach to iter-
ators. Instead of iterating over a container, giving access to
an element, a schema iterator can become an accessor for a
set of tables, meaning the merging work can be done during
iteration, generating a context upon which the transform
operates. This would benefit large, complex merges which
do little with the data, as there would be less memory us-
age creating temporary tables. It would not benefit complex
transforms as it would reduce the likelihood that the next
set of data is in cache ready for the next cycle.

Another aspect of transforms is the separation of what
from how. That is, separating the gathering or loading of
data we will transform from the code which ultimately per-
forms the operations on the data. In some languages, in-
troducing map and reduce is part of the basic syllabus, in
C++, not so much. This is probably because lists aren’t part
of the base language, and without that, it’s hard to intro-
duce powerful tools which require them. These tools, map
and reduce, can be the basis of a purely transform and flow
driven program. Turning a large set of data into a single re-
sult sounds eminently serial, however, as long as one of the
steps, the reduce step, is associative, then you can reduce
in parallel for a significant portion of the reduction.

A simple reduce, one made to create a final total from a
mapping which produces values of zero or one for all match-
ing elements, can be processed as a less and less parallel
tree of reductions. In the first step, all reductions produce
the total of all odd-even pairs of elements and produce a new
list which goes through the same process. This list reduc-
tion continues until there is only one item left remaining. Of
course, this particular reduction is of very little use, as each
reduction is so trivial, you’d be better off assigning an nthof
the workload to each of the n cores and doing one final sum-
ming. A more complex, but equally useful reduction would

152 CHAPTER 8. OPTIMISATIONS

be the concatenation of a chain of matrices. Matrices are
associative even if they are not commutative, and as such,
the chain can be reduced in parallel the same way building
the total worked. By maintaining the order during reduc-
tion you can apply parallel processing to many things which
would normally seem serial, so long as they are associative
in the reduce step. Not only matrix concatenation, but also
products of floating point values such as colour modulation
by multiple causes such as light, diffuse, or gameplay related
tinting. Building text strings can be associative, as can be
building lists.

8.6 Spatial sets for collisions

In collision detection, there is often a broad-phase step which
can massively reduce the number of potential collisions we
check against. When ray casting, it’s often useful to find
the potential intersection via an octree, BSP, or other spatial
query accelerator. When running pathfinding, sometimes
it’s useful to look up local nodes to help choose a starting
node for your journey.

All spatial data-stores accelerate queries by letting them
do less. They are based on some spatial criteria and return
a reduced set which is shorter and thus less expensive to
transform into new data.

Existing libraries which support spatial partitioning have
to try to work with arbitrary structures, but because all our
data is already organised by table, writing adaptors for any
possible table layout is made simpler. Writing generic algo-
rithms becomes easier without any of the side effects nor-
mally associated with writing code that is used in multiple
places. Using the table-based approach, because of its in-
tention agnosticism (that is, the spatial system has no idea
it’s being used on data which doesn’t technically belong in
space), we can use spatial partitioning algorithms in unex-

8.7. LAZY EVALUATION 153

pected places, such as assigning audio channels by not only
their distance from the listener, but also their volume and
importance. Making a 5 dimensional spatial partitioning
system, or even an n dimensional one, would be an invest-
ment. It would only have to be written once and have unit
tests written once, before it could be used and trusted to do
some very strange things. Spatially partitioning by the quest
progress for tasks to do seems a little overkill, but getting the
set of all nearby interesting entities by their location, threat,
and reward, seems like something an AI might consider use-
ful.

8.7 Lazy evaluation for the masses

When optimising object-oriented code, it’s quite common to
find local caches of completed calculations hidden in mu-
table member variables. One trick found in most updating
hierarchies is the dirty bit, the flag that says whether the
child or parent members of a tree have decided this object
needs updating. When traversing the hierarchy, this dirty bit
causes branching based on data which has only just loaded,
usually meaning there is no chance to guess the outcome
and thus in most cases, causes memory to be read in prepa-
ration, when it’s not required.

If your calculation is expensive, then you might not want
to go the route that render engines now use. In render en-
gines, it’s often cheaper to do every scene matrix concate-
nation every frame than it is only doing the ones necessary
and figuring out if they are.

For example, in the Pitfalls of Object-Oriented Program-
ming [?] presentation by Tony Albrecht, in the early slides
he declares that checking a dirty flag is less useful than not
checking it, as when it does fail (the case where the object
is not dirty) the calculation that would have taken 12 cycles
is dwarfed by the cost of a branch misprediction (23-24 cy-

154 CHAPTER 8. OPTIMISATIONS

cles). Things always move on, and in the later talk Pitfalls
revisited[?], he notes that the previous improvement gained
through manual devirtualization no longer provides any ben-
efit. Whether it was the improvements in the compiler or the
change in hardware, reality will always trump experience.

If your calculation is expensive, you don’t want to bog
down the game with a large number of checks to see if the
value needs updating. This is the point at which existence-
based-processing comes into its own again as existence in
the dirty table implies it needs updating, and as a dirty ele-
ment is updated it can be pushing new dirty elements onto
the end of the table, even prefetching if it can improve band-
width.

8.8 Necessity, or not getting what you
didn’t ask for

When you normalise your data you reduce the chance of an-
other multifaceted problem of object-oriented development.
C++’s implementation of objects forces unrelated data to
share cache lines.

Objects collect their data by the class, but many objects,
by design, contain more than one role’s worth of data. This is
because object-oriented development doesn’t naturally allow
for objects to be recomposed based on their role in a trans-
action, and also because C++ needed to provide a method
by which you could have object-oriented programming while
keeping the system level memory allocations overloadable in
a simple way. Most classes contain more than just the bare
minimum, either because of inheritance or because of the
many contexts in which an object can play a part. Unless
you have very carefully laid out a class, many operations
which require only a small amount of information from the
class will load a lot of unnecessary data into the cache in or-
der to do so. Only using a very small amount of the loaded

8.9. VARYING LENGTH SETS 155

data is one of the most common sins of the object-oriented
programmer.

Every virtual call loads in the cache line that contains the
virtual-table pointer of the instance. If the function doesn’t
use any of the class’s early data, then that will be cache
line utilisation in the region of only 4%. That’s a memory
throughput waste, and cannot be recovered without rethink-
ing how you dispatch your functions. Adding a final keyword
to your class can help when your class calls into its own vir-
tual functions, but cannot help when they are called via a
base type.

In practice, only after the function has loaded, can the
CPU load the data it wants to work on, which can be scat-
tered across the memory allocated for the class too. It won’t
know what data it needs until it has decoded the instruc-
tions from the function pointed to by the virtual table entry.

8.9 Varying length sets

Throughout the techniques so far, there’s been an implied
table structure to the data. Each row is a struct, or each
table is a row of columns of data, depending on the need
of the transforms. When working with stream processing,
for example, with shaders, we would normally use fixed size
buffers. Most work done with stream processing has this
same limitation, we tend to have a fixed number of elements
for both sides.

For filtering where the input is known to be a superset of
the output, there can be a strong case for an annealing struc-
ture. Outputting to multiple separate vectors, and concate-
nating them in a final reduce. Each transform thread has
its own output vector, the reduce step would first generate
a total and a start position for each reduce entry and then
processes the list of reduces onto the final contiguous mem-

156 CHAPTER 8. OPTIMISATIONS

ory. A parallel prefix sum would work well here, but simple
linear passes would suffice.

If the filtering was a stage in a radix sort, counting sort,
or something which uses a similar histogram for generating
offsets, then a parallel prefix sum would reduce the latency
to generate the offsets. A prefix sum is the running total of a
list of values. The radix sort output histogram is a great ex-
ample because the bucket counts indicate the starting points
through the sum of all histogram buckets that come prior.
on =

∑n−1
i=0 bi. This is easy to generate in serial form, but

in parallel, we have to consider the minimum required op-
erations to produce the final result. In this case, we can
remember that the longest chain will be the value of the last
offset, which is a sum of all the elements. This is normally
optimised by summing in a binary tree fashion. Dividing and
conquering: first summing all odd numbered slots with all
even numbered slots, then doing the same, but for only the
outputs of the previous stage.

A

��

B

��

C

�� ""

D

��
a

��

ab

�� ((

c

��

cd

��
a ab abc abcd

Then once you have the last element, backfill all the other
elements you didn’t finish on your way to making the last
element. When you come to write this in code, you will find
these backfilled values can be done in parallel while making
the longest chain. They have no dependency on the final
value so can be given over to another process, or managed
by some clever use of SIMD.

8.9. VARYING LENGTH SETS 157

a

��

ab

�� !!

c

��

abcd

��
a ab abc abcd

Parallel prefix sums provide a way to reduce latency, but
are not a general solution which is better than doing a lin-
ear prefix sum. A linear prefix sum uses far fewer machine
resources to do the same thing, so if you can handle the
latency, then simplify your code and do the sum linearly.

Also, for cases where the entity count can rise and fall,
you need a way of adding and deleting without causing any
hiccups. For this, if you intend to transform your data in
place, you need to handle the case where one thread can be
reading and using the data you’re deleting. To do this in a
system where objects’ existence was based on their memory
being allocated, it would be very hard to delete objects that
were being referenced by other transforms. You could use
smart pointers, but in a multi-threaded environment, smart
pointers cost a mutex to be thread safe for every reference
and dereference. This is a high cost to pay, so how do we
avoid it? There are at least two ways.

Don’t have a mutex. One way to avoid the mutex is to
use a smart pointer type which is bound to a single thread.
In some game engines, there are smart pointer types that
instead of keeping a mutex, store an identifier for the thread
they belong to. This is so they can assert every access is
made by the same thread. For performance considerations,
this data doesn’t need to be present in release builds, as
the checks are done to protect against misuse at runtime
caused by decisions made at compile time. For example, if
you know the data should not be used outside of the audio
subsystem, and the audio subsystem is running on a single
thread of its own, lock it down and tie the memory allocation
to the audio thread. Any time the audio system memory is
accessed outside of the audio thread, it’s either because the
audio system is exposing memory to the outside systems or

158 CHAPTER 8. OPTIMISATIONS

it’s doing more work than it should in any callback functions.
In either case, the assert will catch the bad behaviour, and
fixes can be made to the code to counter the general issue,
not the specific case.

Don’t delete. If you are deleting in a system that is con-
stantly changing, then you would normally use pools any-
way. By explicitly not deleting, by doing something else
instead, you change the way all code accesses data. You
change what the data represents. If you need an entity to
exist, such as a CarDriverAI, then it can stack up on your
table of CarDriverAIs while it’s in use, but the moment it’s
not in use, it won’t get deleted, but instead marked as not
used. This is not the same as deleting, because you’re say-
ing the entity is still valid, won’t crash your transform, but
it can be skipped as if it were not there until you get around
to overwriting it with the latest request for a CarDriverAI.
Keeping dead entities around can be as cheap as keeping
pools for your components, as long as there are only a few
dead entities in your tables.

8.10 Joins as intersections

Sometimes, normalisation can mean you need to join tables
together to create the right situation for a query. Unlike
RDBMS queries, we can organise our queries much more
carefully and use the algorithm from merge sort to help us
zip together two tables. As an alternative, we don’t have to
output to a table, it could be a pass-through transform which
takes more than one table and generates a new stream into
another transform. For example, per entityRenderable, join
with entityPosition by entityID, to transform with AddRen-
derCall(Renderable, Position).

8.11. DATA-DRIVEN TECHNIQUES 159

8.11 Data-driven techniques

Apart from finite state machines, there are some other com-
mon forms of data-driven coding practices. Some are not
very obvious, such as callbacks. Some are very obvious,
such as scripting. In both these cases, data causing the
flow of code to change will cause the same kind of cache and
pipeline problems as seen in virtual calls and finite state ma-
chines.

Callbacks can be made safer by using triggers from event
subscription tables. Rather than have a callback which fires
off when a job is done, have an event table for done jobs so
callbacks can be called once the whole run is finished. For
example, if a scoring system has a callback from “badGuy-
Dies”, then in an object-oriented message watcher you would
have the scorer increment its internal score whenever it re-
ceived the message that a badGuyDies. Instead, run each
of the callbacks in the callback table once the whole set of
badGuys has been checked for death. If you do that and ex-
ecute every time all the badGuys have had their tick, then
you can add points once for all badGuys killed. That means
one read for the internal state, and one write. Much better
than multiple reads and writes accumulating a final score.

For scripting, if you have scripts which run over multi-
ple entities, consider how the graphics kernels operate with
branches, sometimes using predication and doing both sides
of a branch before selecting a solution. This would allow you
to reduce the number of branches caused merely by inter-
preting the script on demand. If you go one step further an
actually build SIMD into the scripting core, then you might
find you can use scripts for a very large number of entities
compared to traditional per entity serial scripting. If your
SIMD operations operate over the whole collection of entities,
then you will pay almost no price for script interpretation4.

4Take a look at the section headed The Massively Vectorized Virtual
Machine on the BitSquid blog http://bitsquid.blogspot.co.uk/2012/10/a-
data-oriented-data-driven-system-for.html

160 CHAPTER 8. OPTIMISATIONS

8.11.1 SIMD

SIMD operations can be very beneficial as long as you have
a decent chunk of work to do, such as making an operation
that handles updating positions of particles (see listing 8.5).
This example of SIMDifying some code is straightforward,
and in tests ran about four times faster than both the array
of structs code and the naı̈ve struct of arrays code.

1 void SimpleUpdateParticles(particle_buffer *pb, float delta_time
) {

2 float g = pb->gravity;
3 float gd2 = g * delta_time * delta_time * 0.5f;
4 float gd = g * delta_time;
5 for(int i = 0; i < NUM_PARTICLES; ++i) {
6 pb->posx[i] += pb->vx[i] * delta_time;
7 pb->posy[i] += pb->vy[i] * delta_time + gd2;
8 pb->posz[i] += pb->vz[i] * delta_time;
9 pb->vy[i] += gd;

10 }
11 }
12
13 void SIMD_SSE_UpdateParticles(particle_buffer *pb, float

delta_time) {
14 float g = pb->gravity;
15 float f_gd = g * delta_time;
16 float f_gd2 = pb->gravity * delta_time * delta_time * 0.5f;
17
18 __m128 mmd = _mm_setr_ps(delta_time , delta_time , delta_time ,

delta_time);
19 __m128 mmgd = _mm_load1_ps(&f_gd);
20 __m128 mmgd2 = _mm_load1_ps(&f_gd2);
21
22 __m128 *px = (__m128 *)pb->posx;
23 __m128 *py = (__m128 *)pb->posx;
24 __m128 *pz = (__m128 *)pb->posz;
25 __m128 *vx = (__m128 *)pb->vx;
26 __m128 *vy = (__m128 *)pb->vy;
27 __m128 *vz = (__m128 *)pb->vz;
28
29 int iterationCount = NUM_PARTICLES / 4;
30 for(int i = 0; i < iterationCount; ++i) {
31 __m128 dx = _mm_mul_ps(vx[i], mmd);
32 __m128 dy = _mm_add_ps(_mm_mul_ps(vy[i], mmd), mmgd2);
33 __m128 dz = _mm_mul_ps(vz[i], mmd);
34 __m128 newx = _mm_add_ps(px[i], dx);
35 __m128 newy = _mm_add_ps(py[i], dy);
36 __m128 newz = _mm_add_ps(pz[i], dz);
37 __m128 newvy = _mm_add_ps(vy[i], mmgd);
38 _mm_store_ps ((float*)(px+i), newx);
39 _mm_store_ps ((float*)(py+i), newy);
40 _mm_store_ps ((float*)(pz+i), newz);
41 _mm_store_ps ((float*)(vy+i), newvy);
42 }
43 }

Listing 8.5: Simple particle update with SIMD

In many optimising compilers, simple vectorisation is car-
ried out by default, but only as far as the compiler can figure
things out. It’s not often very easy to figure these things out.

SIMD operations on machines which support SSE, allow

8.12. STRUCTS OF ARRAYS 161

you to get more data into the CPU in one go. Many people
started out by putting their 3D vectors into SIMD units, but
that doesn’t allow full utilisation of the SIMD pipeline. The
example loads in four different particles at the same time,
and updates them all at the same time too. This very simple
technique also means you don’t have to do anything clever
with the data layout, as you can just use a naı̈ve struct of ar-
rays to prepare for SIMDification once you find it has become
a bottleneck.

8.12 Structs of arrays

In addition to all the other benefits of keeping your runtime
data in a database style format, there is the opportunity to
take advantage of structures of arrays rather than arrays of
structures. SoA has been coined as a term to describe an
access pattern for object data. It is okay to keep hot and
cold data side by side in an SoA object as data is pulled into
the cache by necessity rather than by accidental physical
location.

If your animation timekey/value class resembles this:
1 struct Keyframe

2 {

3 float time , x,y,z;

4 };

5 struct Stream

6 {

7 Keyframe *keyframes;

8 int numKeys;

9 };

Listing 8.6: animation timekey/value class

then when you iterate over a large collection of them, all
the data has to be pulled into the cache at once. If we assume
that a cache line is 64 bytes, and the size of floats is 4 bytes,
the Keyframe struct is 16 bytes. This means that every time
you look up a key time, you accidentally pull in four keys and
all the associated keyframe data. If you are doing a binary

162 CHAPTER 8. OPTIMISATIONS

search of a 128 key stream, it could mean you end up loading
64 bytes of data and only using 4 bytes of it in up to 5 of the
steps. If you change the data layout so the searching takes
place in one array, and the data is stored separately, then
you get structures that look like this:

1 struct KeyData

2 {

3 float x,y,z;

4 // consider padding out to 16 bytes long

5 };

6 struct stream

7 {

8 float *times;

9 KeyData *values;

10 numKeys;

11 };

Listing 8.7: struct of arrays

Doing this means that for a 128 key stream, the key times
only take up 8 cache lines in total, and a binary search is go-
ing to pull in at most three of them, and the data lookup is
guaranteed to only require one, or two at most if your data
straddles two cache lines due to choosing memory space ef-
ficiency over performance.

Database technology was here first. In DBMS terms, it’s
called column-oriented databases and they provide better
throughput for data processing over traditional row-oriented
relational databases simply because irrelevant data is not
loaded when doing column aggregations or filtering. There
are other features that make column-store databases more
efficient, such as allowing them to collect many keys under
one value instead of having a key value 1:1 mapping, but
database advances are always being made, and it’s worth
hunting down current literature to see what else might be
worth migrating to your codebase.

Chapter 9

Helping the compiler

Compilers are rather good at optimising code, but there
are ways in which we code that make things harder. There
are tricks we use that break assumptions the compiler can
make. In this section, we will look at some of the things we
do that we should try not to, and we look at how to introduce
some habits that will make it easier for the compiler to do
what we mean, not what we say.

9.1 Reducing order dependence

If the compiler is unable to deduce that the order of oper-
ations is not important to you, then it won’t be able to do
work ahead of schedule. When composing the translated
code into intermediate representation form, there’s a quality
some compilers use called static single assignment form, or
SSA. The idea is that you never modify variables once they
are initially assigned, and instead create new ones when a
modification becomes required. Although you cannot actu-
ally use this in loops, as any operations which carry through
would require the assigned value to change, you can get close

163

164 CHAPTER 9. HELPING THE COMPILER

to it, and in doing so, you can help the compiler understand
what you mean when you are modifying and assigning val-
ues. Skimming the available features and tutorials in lan-
guages such as Haskell, Erlang, and Single-Assignment C
can give you the necessary hints to write your code in a sin-
gle assignment manner.

Writing code like this means you will see where the com-
piler has to branch more easily, but also, you can make
your writes more explicit, which means that where a com-
piler might have had to break away from writing to memory,
you can force it to write in all cases, making your process-
ing more homogeneous, and therefore more likely to stream
better.

9.2 Reducing memory dependency

Linked lists are expensive due to dependencies, but depen-
dencies of a different sort. Memory being slow, you want to
be able to load it in time for your operations, but when the
address you need to load is itself still being loaded, you can’t
cheat anymore. Pointer driven tree algorithms are slow, not
because of the memory lookups, but because the memory
lookups are chained together.

If you want to make your map or set implementation run
faster, move to a wide node algorithm such as a B-tree, or
B*-tree. Hopefully, at some point soon, the STL will allow
you to chose the method by which std::map and std::set

are implemented.

When you have an entity component system using the
compositional style, and you have a pointer based composi-
tion, then the two layers of pointers to get to the component
is slowing you down. If you have pointers inside those com-
ponents, you’re just compounding the problem.

Attempt where possible to reduce the number of hops to

9.3. WRITE BUFFER AWARENESS 165

get to the data you need. Each hop that depends on previous
data is potentially a stall waiting for main memory.

9.3 Write buffer awareness

When writing, the same issues need to be considered as
when reading. Try to keep things contiguous where possible.
Try to keep modified values separated from read-only values,
and also from write-only values.

In short, write contiguously, in large amounts at a time,
and use all the bytes, not a small part of them. We need to
try to do this, as not only does it help with activation and
deactivation of different memory pages, but also opens up
opportunities for the compiler to optimise.

When you have a cache, sometimes it’s important to find
ways to bypass it. If you know that you won’t be using the
data you’re loading more than once or at least not soon
enough to benefit from caching, then it can be useful to
find ways to avoid polluting the cache. When you write your
transforms in simple ways, it can help the compiler promote
your operations from ones which pollute the cache, to in-
structions that bypass the cache completely. These stream-
ing operations benefit the caches by not evicting randomly
accessed memory.

In the article What every programmer should know about
memory[?], Ulrich Drepper talks about many aspects of
memory which are interesting to get the most out of your
computer hardware. In the article, he used the term non-
temporality to describe the kinds of operations we call
streaming. These non-temporal memory operations help
because they bypass the cache completely, which naı̈vely
would seem to be a poor choice, but as the name suggests,
streaming data is not likely to be recalled into registers any
time soon, so having it available in the cache is pointless, and

166 CHAPTER 9. HELPING THE COMPILER

merely evicts potentially useful data. Streaming operations,
therefore, allow you some control over what you consider
important to be in cache, and what is almost certainly not.

9.4 Aliasing

Aliasing is when it’s possible for pointers to reference the
same memory, and therefore require reloading between reads
if the other pointer has been written to. A simple exam-
ple could be where the value we’re looking for is specified
by reference, rather than by value, so if any functions that
could potentially affect the memory being referred to by that
lookup reference, then the reference must be re-read before
doing a comparison. The very fact it is a pointer, rather than
a value, is what causes the issue.

A reason to work with data in an immutable way comes
in the form of preparations for optimisation. C++, as a lan-
guage, provides a lot of ways for the programmer to shoot
themselves in the foot, and one of the best is that pointers to
memory can cause unexpected side effects when used with-
out caution. Consider this piece of code:

1 char buffer[100];

2 buffer [0] = ’X’;

3 memcpy(buffer+1, buffer , 98);

4 buffer[99] = ’\0’;

Listing 9.1: byte copying

This is perfectly correct code if you just want to get a
string filled with 99 ’X’s. However, because this is possible,
memcpy has to copy one byte at a time. To speed up copying,
you normally load in a lot of memory locations at once, then
save them out once they are all in the cache. If your input
data can be modified by writes to your output buffer, then
you have to tread very carefully. Now consider this:

9.5. RETURN VALUE OPTIMISATION 167

1 int q=10;

2 int p[10];

3 for(int i = 0; i < q; ++i)

4 p[i] = i;

Listing 9.2: trivially parallelisable code

The compiler can figure out that q is unaffected, and can
happily unroll this loop or replace the check against q with
a register value. However, looking at this code instead:

1 void foo(int* p, const int &q)

2 {

3 for(int i = 0; i < q; ++i)

4 p[i] = i;

5 }

6

7 int q=10;

8 int p[10];

9 foo(p, q);

Listing 9.3: potentially aliased int

The compiler cannot tell that q is unaffected by operations
on p, so it has to store p and reload q every time it checks the
end of the loop. This is called aliasing, where the address of
two variables that are in use are not known to be different,
so to ensure functionally correct code, the variables have to
be handled as if they might be at the same address.

9.5 Return value optimisation

If you want to return multiple values, the normal way is to
return via reference arguments, or by filling out an object
passed by reference. In many cases, return by value can be
very cheap as many compilers can turn it into a non-copy
operation.

When a function attempts to return a structure by con-
structing the value in place during the return, it is allowed
to move the construction straight into the value that will re-

168 CHAPTER 9. HELPING THE COMPILER

ceive it, without doing a copy at all.

Utilising std::pair or other small temporary structs can
help by making more of your code run on value types, which
are not only inherently easier to reason about, but also easier
to optimise by a compiler.

9.6 Cache line utilisation

It is a truth universally acknowledged that a single memory
request will always read in at least one complete cache line.
That complete cache line will contain multiple bytes of data.
At the time of writing this book, the most common cache
line size seems to have stabilized at 64 bytes. With this in-
formation, we can speculate about what data will be cheap
to access purely by their location relative to other data.

In Searching (Chapter 6), we utilise this information to
decide the location and quantity of data that is available for
creating the rapid lookup table included in the example that
uses a two-layer linear search that turns out to be faster than
a binary search.

When you have an object you will be loading into memory,
calculate the difference between a cache line and the size of
the object. That difference is how much memory you have
left to place data you can read for free. Use this space to
answer the common questions you have about the class, and
you will often see speedups as there will be no extra memory
accesses.

For example, consider a codebase that partially migrated
to components, and still has an entity class which points
to optional rows in component arrays. In this case, we can
cache the fact the entity has elements in those arrays in the
latter part of the entity class as a bitset. This would mean the
entity on entity interactions could save doing a lookup into
the arrays if there was no matching row. It can also improve

9.7. FALSE SHARING 169

render performance as the renderer can immediately tell that
there is no damage done, so will just show a full health icon
or nothing at all.

In the example code in listing ?? in Chapter ??, an at-
tempt is made to use more of an object’s initial cache line to
answer questions about the rest of the object, and you can
see various levels of success in the results. In the case of
fully caching the result, a massive improvement was gained.
If the result cannot be quickly calculated and needs to be cal-
culated on demand, caching that there was something to do
was a factor of four improvement. Caching the result when
you can, had differing levels of performance improvement,
based on the likelihood of hitting a cached response. In all,
using the extra data you have on your cache line is always
an improvement over simple checking.

i5-4430 @ 3.00GHz

Average 11.31ms [Simple, check the map]

Average 9.62ms [Partially cached query (25%)]

Average 8.77ms [Partially cached presence (50%)]

Average 3.71ms [Simple, cache presence]

Average 1.51ms [Partially cached query (95%)]

Average 0.30ms [Fully cached query]

So, in summary, keep in mind, every time you load any
memory at all, you are loading in a full cache line of bytes.
Currently, with 64-byte cache lines, that’s a 4x4 matrix of
floats, 8 doubles, 16 ints, a 64 character ASCII string, or
512 bits.

9.7 False sharing

When a CPU core shares no resources with another, it can al-
ways operate at full speed independently, right? Well, some-
times no. Even if the CPU core is working on independent
data, there are times it can get choked up on the cache.

170 CHAPTER 9. HELPING THE COMPILER

On the opposite side of the same issue as writing linearly,
when you are writing out data to the same cache line, it can
interfere with threading. Due to the advancement of compil-
ers, it seems this happens far less frequently than it should,
and when attempting to reproduce the issue to give ideas on
the effect it can have, only by turning off optimisations is it
possible to witness the effect with trivial examples.

The idea is that multiple threads will want to read from
and write to the same cache line, but not necessarily the
same memory addresses in the cache line. It’s relatively easy
to avoid this by ensuring any rapidly updated variables are
kept local to the thread, whether on the stack or in thread lo-
cal storage. Other data, as long as it’s not updated regularly,
is highly unlikely to cause a collision.

There has been a lot of talk about this particular problem,
but the real-world is different from the real-world problems
supposed. Always check your problems are real after optimi-
sation, as well as before, as even the high and mighty have
fallen for this as a cause of massive grief.

1 void FalseSharing () {
2 int sum =0;
3 int aligned_sum_store[NUM_THREADS] __attribute__ ((aligned (64)))

;
4 #pragma omp parallel num_threads(NUM_THREADS)
5 {
6 int me = omp_get_thread_num ();
7 aligned_sum_store[me] = 0;
8 for (int i = me; i < ELEMENT_COUNT; i += NUM_THREADS) {
9 aligned_sum_store[me] += CalcValue(i);

10 }
11 #pragma omp atomic
12 sum += aligned_sum_store[me];
13 }
14 }
15
16 void LocalAccumulator () {
17 int sum =0;
18 #pragma omp parallel num_threads(NUM_THREADS)
19 {
20 int me = omp_get_thread_num ();
21 int local_accumulator = 0;
22 for (int i = me; i < ELEMENT_COUNT; i += NUM_THREADS) {
23 local_accumulator += CalcValue(i);
24 }
25 #pragma omp atomic
26 sum += local_accumulator;
27 }
28 }

Listing 9.4: False sharing

So, how can you tell if this problem is real or not? If your

9.8. SPECULATIVE EXECUTION AWARENESS 171

multi-threaded code is not growing at a linear rate of pro-
cessing as you add cores, then you might be suffering from
false sharing, look at the where your threads are writing, and
try to remove the writes from shared memory where possible
until the last step. The common example given is of adding
up some arrays and updating the sum value in some global
shared location, such as in listing 9.4.

In the FalseSharing function, the sums are written to as
a shared resource, and each thread will cause the cache to
clean up and handle that line being dirty for each of the other
cores before they can update their elements in the cache line.
In the second function, LocalAccumulator, each thread sums
up their series before writing out the result.

9.8 Speculative execution awareness

Speculative execution helps as it executes instructions and
prepares data before we arrive at where we might need them,
effectively allowing us to do work before we know we need it,
but sometimes it could have a detrimental effect. For exam-
ple, consider the codebase mentioned previously, that had
partially migrated to components. The bit arrays of which
optional tables it was currently resident could lead, through
speculation, to loading in details about those arrays. With
speculative execution, you will need to watch out for the code
accidentally prefetching data because it was waiting to find
out the result of a comparison. These speculative operations
have been in the news with SPECTRE and MELTDOWN vul-
nerabilities.

These branch prediction caused reads can be reduced by
pre-calculating predicates where possible, storing the result
of doing a common query in your rows is a big win for most
machines and a massive one for machines with poor mem-
ory latency or high CPU bandwidth to memory bandwidth
ratios. Moving to techniques where branch mispredictions

172 CHAPTER 9. HELPING THE COMPILER

cause the smallest side-effects to the data is a generally good
idea. Even caching only when you can, storing the result
back in the initial section, can save bandwidth over time.

In the cache line utilisation section, the numbers showed
that the possibility of getting data seemed to affect how fast
the process went, much more than it would be expected,
which leads to a belief that speculative loads of unnecessary
data were potentially harming overall throughput.

Even if all you are able to cache is whether a query will
return a result, it can be beneficial. Avoiding lookups into
complex data structures by keeping data on whether or not
there are entries matching that description can give speed
boosts with very few detrimental side-effects.

9.9 Branch prediction

One of the main causes of stalling in CPUs comes down to not
having any work to do, or having to unravel what they have
already done because they predicted badly. If code is specu-
latively executed, and requests memory that is not needed,
then the load has become a wasteful use of memory band-
width. Any work done will be rejected and the correct work
has to be started or continued. To get around this issue,
there are ways to make code branch free, but another way is
to understand the branch prediction mechanism of the CPU
and help it out.

If you make prediction trivial, then the predictor will get
it right most of the time. If you ensure the conditions are
consistently true or false in large chunks, the predictor will
make fewer mistakes. A trivial example such as in listing 9.5
will predict to either do or not do the accumulation, based
on the incoming data. The work being done here can be
optimised away by most compilers using a conditional move
instruction if the CPU supports it. If you make the work

9.9. BRANCH PREDICTION 173

done a little more realistic, then even with full optimisations
turned on, you can see a very large difference1 if you can
sort the data so the branches are much more predictable.
The other thing to remember is that if the compiler can help
you, let it. The optimised trivial example is only trivial in
comparison to other common workloads, but if your actual
work is trivially optimised into a conditional execution, then
sorting your data will be a waste of effort.

1 int SumBasedOnData () {
2 int sum =0;
3 for (int i = 0; i < ELEMENT_COUNT; i++) {
4 if(a[i] > 128) {
5 sum += b[i];
6 }
7 }
8 return sum;
9 }

Listing 9.5: Doing work based on data

i5-4430 @ 3.00GHz

Average 4.40ms [Random branching]

Average 1.15ms [Sorted branching]

Average 0.80ms [Trivial Random branching]

Average 0.76ms [Trivial Sorted branching]

Branching happens because of data, and remember the
reason why branching is bad is not that jumps are expen-
sive, but the work being done because of a misprediction will
have to be undone. Because of this, it’s valuable to remem-
ber that a vtable pointer is data too. When you don’t batch
update, you won’t be getting the most out of your branch
predictor, but even if you don’t hit the branch predictor at
all, you may still be committing to sequences of instructions
based on data.

1On an i5-4430 the unsorted sum ran in 4.2ms vs the sorted sum run-
ning in 0.8ms. The trivial version, which was likely mostly compiled into
CMOVs, ran in 0.4ms both sorted and unsorted

174 CHAPTER 9. HELPING THE COMPILER

9.10 Don’t get evicted

If you’re working with others, as many are, then perhaps
the simplest solution to a lot of issues with poor cache per-
formance has to take into account other areas of the code.
If you’re working on a multi-core machine (you are, unless
we went back in time), then there’s a good chance that all
processes are sharing and contending for the caches on the
machine. Your code will be evicted from the cache, there is
no doubt. So will your data. To reduce the chance or fre-
quency of your code and data being evicted, keep both code
and data small and process in bursts when you can.

It’s very simple advice. Not only is small code less likely to
be evicted, but if it’s done in bursts it will have had a chance
to get a reasonable amount of work before being overwritten.
Some cache architectures don’t have any way to tell if the
elements in the cache have been used recently, so they rely
on when they were added as a metric for what should be
evicted first. In particular, some Intel CPUs can have their
L1 and L2 cache lines evicted because of L3 needing to evict,
but L3 doesn’t have full access to LRU information. The Intel
CPUs in question have some other magic that reduces the
likelihood of this happening, but it does happen.

To that end, try to find ways to guarantee to the compiler
that you are working with aligned data, in arrays that are
multiples of 4 or 8, or 16, so the compiler doesn’t need to
add preambles and postamble code to handle unaligned, or
irregularly sized arrays. It can be better to have 3 more dead
elements in an array and handle it as an array of length N ∗4.

9.11 Auto vectorisation

Auto vectorisation will help your applications run faster just
by enabling it and forming your code in such a way that it

9.11. AUTO VECTORISATION 175

is possible for the compiler to make safe assumptions, and
change the instructions from scalar to vector.

1 void Amplify(float *a, float mult , int count)
2 {
3 for(int i = 0; i < count; ++i) {
4 a[i] *= mult;
5 }
6 }

Listing 9.6: Trivial amplification function

There are many trivial examples of things which can be
cleanly vectorised. The first example is found in listing 9.6,
which is simple enough to be vectorised by most compilers
when optimisations are turned on. The issue is that there
are few guarantees with the code, so even though it can be
quite fast to process the data, this code will take up a lot
more space than is necessary in the instruction cache.

1 typedef float f16 __attribute__ ((aligned (16)));
2
3 void Amplify(f16 *a, float mult , int count)
4 {
5 count &= -4;
6 for(int i = 0; i < count; ++i) {
7 a[i] *= mult;
8 }
9 }

Listing 9.7: Amplification function with alignment hints

If you can add some simple guarantees, such as by us-
ing aligned pointers, and by giving the compiler some guar-
antees about the number of elements, then you can cut the
size of the emitted assembly, which on a per case basis won’t
help, but over a large codebase, it will increase the effective-
ness of your instruction cache as the number of instructions
to be decoded is slashed. Listing 9.7 isn’t faster in isolated
test beds, but the size of the final executable will be smaller,
as the generated code is less than half the size. This is
a problem with micro-benchmarks, they can’t always show
how systems work together or fight against each other. In
real-world tests, fixing up the alignment of pointers can im-
prove performance dramatically. In small test beds, memory
throughput is normally the only bottleneck.

1 typedef float f16 __attribute__ ((aligned (16)));
2
3 void Amplify(f16 *a, float mult , int count)

176 CHAPTER 9. HELPING THE COMPILER

4 {
5 count &= -4;
6 for(int i = 0; i < count; ++i) {
7 if(a[i] < 0)
8 break;
9 a[i] *= mult;

10 }
11 }

Listing 9.8: Breaking out, breaks vectorisation

A thing to watch out for is making sure the loops are triv-
ial and always run their course. If a loop has to break based
on data, then it won’t be able to commit to doing all elements
of the processing, and that means it has to do each element
at a time. In listing 9.8 the introduction of a break based on
the data turns the function from a fast parallel SIMD opera-
tion auto-vectorisable loop, into a single stepping loop. Note
that branching in and of itself does not cause a breakdown in
vectorisation, but the fact the loop is exited based on data.
For example, in listing 9.9, the branch can be turned into
other operations. It’s also the case that calling out to a func-
tion can often break the vectorisation, as side effects cannot
normally be guaranteed. If the function is a constexpr, then
there’s a much better chance it can be consumed into the
body of the loop, and won’t break vectorisation. On some
compilers, there are certain mathematical functions which
are available in a vectorised form, such as min, abs, sqrt,
tan, pow, etc. Find out what your compiler can vectorise. It
can often help to write your series of operations out longhand
to some extent, as trying to shorten the C++ code, can lead
to slight ambiguities with what the compiler is allowed to do.
One thing to watch out for in particular is making sure you
always write out. If you only write part of the output stream,
then it won’t be able to write out whole SIMD data types, so
write out to your output variable, even if it means reading it
in, just to write it out again.

1 typedef float f16 __attribute__ ((aligned (16)));
2
3 void Amplify(f16 *a, float mult , int count)
4 {
5 count &= -4;
6 for(int i = 0; i < count; ++i) {
7 f16 val = a[i] * mult;
8 if(val > 0)
9 a[i] = val;

10 else
11 a[i] = 0;

9.11. AUTO VECTORISATION 177

12 }
13 }

Listing 9.9: Vectorising an if

Aliasing can also affect auto vectorisation, as when point-
ers can overlap, there could be dependencies between differ-
ent members of the same SIMD register. Consider the listing
9.10, where the first version of the function increments each
member by its direct neighbour. This function is pointless
but serves us as an example. The function will create a pair-
wise sum all the way to the end float by float. As such, it
cannot be trivially vectorised. The second function, though
equally pointless, makes large enough steps that auto vec-
torisation can find a way to calculate multiple values per
step.

1 void CombineNext(float *a, int count)
2 {
3 for(int i = 0; i < count - 1; ++i) {
4 a[i] += a[i+1]
5 }
6 }
7
8 void CombineFours(float *a, int count)
9 {

10 for(int i = 0; i < count - 4; ++i) {
11 a[i] += a[i+4]
12 }
13 }

Listing 9.10: Aliasing affecting vectorisation

Different compilers will manage different amounts of vec-
torisation based on the way you write your code, but in gen-
eral, the simpler you write your code, the more likely the
compiler will be able to optimise your source.

Over the next decade, compilers will get better and better.
Clang already attempts to unroll loops far more than GCC
does, and many new ways to detect and optimise simple code
will likely appear. At the time of writing, the online Compiler
Explorer provided by Matt Godbolt2, provides a good way to
see how your code will be compiled into assembly, so you
can see what can and will be vectorised, optimised out, re-
arranged, or otherwise mutated into the machine-readable

2https://godbolt.org/

178 CHAPTER 9. HELPING THE COMPILER

form. Remember that the number of assembly instructions
is not a good metric for fast code, that SIMD operations are
not inherently faster in all cases, and measuring the code
running cannot be replaced by stroking your chin3 while
thinking about whether the instructions look cool, and you
should be okay.

3or even stroking a beard, or biting a pencil (while making a really serious
face), as one reviewer pleaded

Chapter 10

Maintenance and
reuse

When object-oriented design was first promoted, it was said
to be easier to modify and extend existing code bases than
the more traditional procedural approach. Though it is not
true in practice, it is often cited by object-oriented developers
when reading about other programming paradigms. Regard-
less of their level of expertise, an object-oriented program-
mer will very likely cite the extensible, encapsulating nature
of object-oriented development as a boon when it comes to
working on larger projects.

Highly experienced but more objective developers have
admitted or even written about how object-oriented C++ is
not highly suited to big projects with lots of dependencies,
but can be used as long as you follow strict guidelines such
as those found in the Large-scale C++ book[?]. For those
who cannot immediately see the benefit of the data-oriented
development paradigm with respect to maintenance and evo-
lutionary development, this chapter covers why it is easier
than working with objects.

179

180 CHAPTER 10. MAINTENANCE AND REUSE

10.1 Cosmic hierarchies

Whatever you call them, be it Cosmic Base Class, Root of all
Evil, Gotcha #97, or CObject, having a base class that every-
thing derives from has pretty much been a universal failure
point in large C++ projects. The language does not naturally
support introspection or duck typing, so it has difficulty util-
ising CObjects effectively. If we have a database driven ap-
proach, the idea of a cosmic base class might make a subtle
entrance right at the beginning by appearing as the entity to
which all other components are adjectives about, thus not
letting anything be anything other than an entity. Although
component–based engines can often be found sporting an
EntityID as their owner, not all require owners. Not all have
only one owner. When you normalise databases, you find
you have a collection of different entity types. In our level
file example, we saw how the objects we started with turned
into a MeshID, TextureID, RoomID, and a PickupID. We even
saw the emergence through necessity of a DoorID. If we pile
all these Ids into a central EntityID, the system should work
fine, but it’s not a necessary step. A lot of entity systems do
take this approach, but as is the case with most movements,
the first swing away from danger often swings too far. The
balance is to be found in practical examples of data normal-
isation provided by the database industry.

10.2 Debugging

The prime causes of bugs are the unexpected side effects of a
transform or an unexpected corner case where a conditional
didn’t return the correct value. In object-oriented program-
ming, this can manifest in many ways, from an exception
caused by de-referencing a null, to ignoring the interactions
of the player because the game logic hadn’t noticed it was
meant to be interactive.

10.2. DEBUGGING 181

Holding the state of a system in your head, and playing
computer to figure out what is going on, is where we get the
idea that programmers absolutely need to be in the zone
to get any real work done. The reality is probably far less
thrilling. The reality is closer to the fear that programmers
only need to be in the zone if the code is nearing deadly levels
of complexity.

10.2.1 Lifetimes

One of the most common causes of the null dereference is
when an object’s lifetime is handled by a separate object
to the one manipulating it. For example, if you are play-
ing a game where the badguys can die, you have to be care-
ful to update all the objects that are using them whenever
the badguy gets deleted, otherwise, you can end up derefer-
encing invalid memory which can lead to dereferencing null
pointers because the class has destructed. Data-oriented
development tends towards this being impossible as the ex-
istence of an entity in an array implies its processability, and
if you leave part of an entity around in a table, you haven’t
deleted the entity fully. This is a different kind of bug, but
it’s not a crash bug, and it’s easier to find and kill as it’s just
making sure that when an entity is destroyed, all the tables
it can be part of also destroy their elements too.

10.2.2 Avoiding pointers

When looking for data-oriented solutions to programming
problems, we often find pointers aren’t required, and often
make the solution harder to scale. Using pointers where null
values are possible implies each pointer doesn’t only have
the value of the object being pointed at, but also implies a
boolean value for whether or not the instance exists. Remov-
ing this unnecessary extra feature can remove bugs, save
time, and reduce complexity.

182 CHAPTER 10. MAINTENANCE AND REUSE

10.2.3 Bad State

Bugs have a lot to do with not being in the right state. De-
bugging, therefore, becomes a case of finding out how the
game got into its current, broken state.

1 bool SingleReturn(int numDucks) {
2 bool valid = true;
3 // must be 10 or fewer ducks.
4 if(numDucks > 10) valid = false;
5 // number of ducks should be even.
6 valid = (numDucks & 1) == 0;
7 // can ’t have negative ducks.
8 if(numDucks < 0) valid = false;
9 return valid;

10 }
11 bool RecursiveCheck(Node * node) {
12 bool valid = true;
13 if(node) {
14 valid = node ->Valid();
15 valid &= RecursiveCheck(node ->sibling);
16 valid &= RecursiveCheck(node ->child);
17 }
18 return valid;
19 }

Listing 10.1: Modifying state can shadow history

Whenever you assign a value to a variable, you are de-
stroying history. Take the example in listing 10.1. The ideal
of having only one return statement in a function can cause
this kind of error with greater frequency than expected. Hav-
ing more than one return point has its own problems. What’s
important is once you have got to the end of the function, it’s
hard to figure out what it was that caused it to fail validation.
You can’t even breakpoint the bail points. The recursive ex-
ample is even more dangerous, as there’s a whole tree of ob-
jects and it will recurse through all of them before returning,
regardless of value, and again, is impossible to breakpoint.

When you encapsulate your state, you hide internal
changes. This quickly leads to adding lots of debugging
logs. Instead of hiding, data-oriented suggests keeping data
in simple forms. Potentially, leaving it around longer than
required can lead to highly simplified transform inspection.
If you have a transform that appears to work, but for one
odd case it doesn’t, the simplicity of adding an assert and
not deleting the input data can reduce the amount of guess-
work and toil required to generate the reproduction required

10.3. REUSABILITY 183

to understand the bug and make a clean fix. If you keep
most of your transforms as one-way, that is to say, they take
from one source, and produce or update another, then even
if you run the code multiple times it will still produce the
same results as it would have the first time. The transform
is idempotent. This useful property allows you to find a bug
symptom, then rewind and trace through the causes without
having to attempt to rebuild the initial state.

One way of keeping your code idempotent is to write your
transforms in a single assignment style. If you operate with
multiple transforms but all leading to predicated join points,
you can guarantee yourself some timings, and you can look
back at what caused the final state to turn out like it did
without even rewinding. If your conditions are condition ta-
bles, just leave the inputs around until validity checks have
been completed then you have the ability to go into any live
system and check how it arrived at that state. This alone
should reduce any investigation time to a minimum.

10.3 Reusability

A feature commonly cited by the object-oriented developers
which seems to be missing from data-oriented development
is reusability. The idea that you won’t be able to take already
written libraries of code and use them again, or on multiple
projects, because the design is partially within the imple-
mentation. To be sure, once you start optimising your code
to the particular features of a software project, you do end up
with code which cannot be reused. While developing data-
oriented projects, the assumed inability to reuse source code
would be significant, but it is also highly unlikely. The truth
is found when considering the true meaning of reusability.

Reusability is not fundamentally concerned with reusing
source files or libraries. Reusability is the ability to main-
tain an investment in information, or the invention of more

184 CHAPTER 10. MAINTENANCE AND REUSE

vocabulary with which to communicate intention, such as
with the STL, or with other libraries of structural code. In
the primary example of reuse as sequences of actions, this
is a wealth of knowledge for the entity that owns the develop-
ment IP and is very nearly what patents are built on. In the
latter, the vocabulary is often stumbled upon, rather than
truly invented.

Copyright law has made it hard to see what resources
have value in reuse, as it maintains the source as the ob-
ject of its discussion rather than the intellectual property
represented by the source. The reason for this is that ideas
cannot be copyrighted, so by maintaining this stance, the
copyrighter keeps hold of this tenuous link to a right to with-
hold information. Reusability comes from being aware of the
information contained within the medium it is stored. In our
case, it is normally stored as source code, but the informa-
tion is not the source code. With object-oriented develop-
ment, the source can be adapted (adapter pattern) to any
project we wish to venture. However, the source is not the
information. The information is the order and existence of
tasks that can and will be performed on the data. View-
ing the information this way leads to an understanding that
any reusability a programming technique can provide comes
down to its mutability of inputs and outputs. Its willingness
to adapt a set of temporally coupled tasks into a new us-
age framework is how you can find out how well it functions
reusably.

In object-oriented development, you apply the informa-
tion inherent in the code by adapting a class that does the
job, or wrapper it, or use an agent. In data-oriented devel-
opment, you copy the functions and schema and transform
into and out of the input and output data structures around
the time you apply the information contained in the data-
oriented transform.

Even though, at first sight, data-oriented code doesn’t ap-
pear as reusable on the outside, the fact is, it maintains the

10.3. REUSABILITY 185

same amount of information in a simpler form, so it’s more
reusable as it doesn’t carry the baggage of related data or
functions like object-oriented programming, and doesn’t re-
quire complex transforms to generate the input and extract
from the output like procedural programming tends to gen-
erate due to the normalising.

Duck typing, not normally available in object-oriented
programming due to a stricter set of rules on how to in-
terface between data, can be implemented with templates
to great effect, turning code which might not be obviously
reusable into a simple strategy, or a sequence of transforms
which can be applied to data or structures of any type, as
long as they maintain a naming convention.

The object-oriented C++ idea of reusability is a mix-
ture of information and architecture. Developing from a
data-oriented transform centric viewpoint, architecture just
seems like a lot of fluff code. The only good architecture
that’s worth saving is the actualisation of data-flow and
transform. There are situations where an object-oriented
module can be used again, but they are few and far between
because of the inherent difficulty interfacing object-oriented
projects with each other.

The most reusable object-oriented code appears as in-
terfaces to agents into a much more complex system. The
best example of an object-oriented approach that made ev-
erything easier to handle, that was highly reusable, and was
fully encapsulated was the FILE type from stdio.h which is
used as an agent into whatever the platform and OS would
need to open, access, write, and read to and from a file on
the system.

186 CHAPTER 10. MAINTENANCE AND REUSE

10.4 Reusable functions

Apart from the freedom of extension when it comes to keep-
ing all your data in simple linear arrangements, there is also
an implicit tendency to turn out accidentally reusable solu-
tions to problems. This is caused by the data being formatted
much more rigidly, and therefore when it fits, can almost be
seen as a type of duck-typing. If the data can fit a trans-
form, a transform should be able to act on it. Some would
argue, just because the types match, it doesn’t mean the
function will create the expected outcome, but in addition
to this being avoidable by not reusing code you don’t under-
stand, in some cases, all you need is to know the signature
to understand the transform. As an extreme example, it’s
possible to understand a fair number of Haskell functions
purely based on their arguments. Finally, because the code
becomes much more penetrable, it takes less time to look at
what a transform is doing before committing to reusing it in
your own code.

Because the data is built in the same way each time,
handled with transforms and always being held in the same
types of container, there is a very good chance there are
multiple design agnostic optimisations which can be ap-
plied to many parts of the code. General purpose sorting,
counting, searches and spatial awareness systems can be
attached to new data without calling for OOP adapters or
implementing interfaces so Strategies can run over them.
This is why it’s possible to have generalised query optimisa-
tions in databases, and if you start to develop your code this
way, you can carry your optimisations with you across more
projects.

10.5. UNIT TESTING 187

10.5 Unit testing

Unit testing can be very helpful when developing games, but
because of the object-oriented paradigm making program-
mers think about code as representations of objects, and
not as data transforms, it’s hard to see what can be tested.
Linking together unrelated concepts into the same object
and requiring complex setup state before a test can be car-
ried out, has given unit testing a stunted start in games as
object-oriented programming caused simple tests to be hard
to write. Making tests is further complicated by the addition
of the non-obvious nature of how objects are transformed
when they represent entities in a game world. It can be very
hard to write unit tests unless you’ve been working with them
for a while, and the main point of unit tests is that someone
who doesn’t fully grok the system can make changes without
falling foul of making things worse.

Unit testing is mostly useful during refactorings, taking a
game or engine from one code and data layout into another
one, ready for future changes. Usually, this is done because
the data is in the wrong shape, which in itself is harder to
do if you normalise your data as you’re more likely to have
left the data in an unconfigured form. There will obviously
be times when even normalised data is not sufficient, such
as when the design of the game changes sufficient to ren-
der the original data-analysis incorrect, or at the very least,
ineffective or inefficient.

Unit testing is simple with data-oriented technique be-
cause you are already concentrating on the transform. Gen-
erating tables of test data would be part of your development,
so leaving some in as unit tests would be simple, if not part of
the process of developing the game. Using unit tests to help
guide the code could be considered to be partial following
the test-driven development technique, a proven good way to
generate efficient and clear code.

Remember, when you’re doing data-oriented development

188 CHAPTER 10. MAINTENANCE AND REUSE

your game is entirely driven by stateful data and stateless
transforms. It is very simple to produce unit tests for your
transforms. You don’t even need a framework, just an input
and output table and then a comparison function to check
the transform produced the right data.

10.6 Refactoring

During refactoring, it’s always important to know you’ve not
broken anything by changing the code. Allowing for such
simple unit testing gets you halfway there. Another advan-
tage of data-oriented development is that, at every turn, it
peels away the unnecessary elements. You might find refac-
toring is more a case of switching out the order of transforms
than changing how things are represented. Refactoring nor-
mally involves some new data representation, but as long
as you build your structures with normalisation in mind,
there’s going to be little need of that. When it is needed,
tools for converting from one schema to another could be
written once and used many times.

It might come to pass, as you work with normalised data,
that you realise the reason you were refactoring so much in
the first place, was that you had embedded meaning in the
code by putting the data in objects with names, and methods
that did things to the objects, rather than transformed the
data.

Chapter 11

What’s wrong?

What’s wrong with object-oriented design? Where’s the
harm in it?

Over the years, game developers have fallen into a style
of C++ that is so unappealing to hardware that the managed
languages don’t seem all that much slower in comparison.
The pattern of usage of C++ in game development was so ap-
pallingly mismatched to the hardware of the PlayStation 3
and Xbox 360 generation, it is no wonder an interpreted lan-
guage is only in the region of 50% slower under normal use
and sometimes faster1 in their specialist areas. What is this
strange language that has embedded itself into the minds of
C++ game developers? What is it that makes the fashionable
way of coding games one of the worst ways of making use
of the machines we’re targeting? Where, in essence, is the
harm in game-development style object-oriented C++?

Some of this comes from the initial interpretation of what
object-oriented means, as game developers tended to believe
that object-oriented meant you had to map instances of ev-

1http://keithlea.com/javabench/ tells the tale of the server JVM being
faster than C++. There are some arguments against the results, but there
are others backing it up. Read, make up your own mind.

189

190 CHAPTER 11. WHAT’S WRONG?

erything you cared about into the code as instances of ob-
jects. This form of object-oriented development could be
interpreted as instance-oriented development, and it puts
the singular unique entity ahead of the program as a whole.
When put this way, it is easier to see some of the problems
that can arise. Performance of an individual is very hard to
decry as poor, as object methods are hard to time accurately,
and unlikely to be timed at all. When your development prac-
tices promote individual elements above the program as a
whole, you will also pay the mental capacity penalty, as you
have to consider all operations from the point of view of the
actors, with their hidden state, not from a point of view of
value semantics.

Another issue is it appears that performance has not been
ignored by the language designers, but potentially instead it
has been tested for quality in isolation. This could be be-
cause the real world uses of C++ are quite different from the
expectation of the library providers, or it could be the library
providers are working to internal metrics instead of making
sure they understand their customer. It’s the opinion of the
author, when developing a library, or a set of templates for
use in C++, it shouldn’t just be possible to tune performance
out of the code you are using, it should come as default. If
you make it possible to tune performance, you trade features
for understanding and performance. This is a poor trade for
game developers, but has been accepted, as the benefit of a
common language is a very tempting offer.

11.1 The harm

Claim: Virtuals don’t cost much, but if you call them a lot it
can add up.
aka - death by a thousand paper cuts

The overhead of a virtual call is negligible under simple
inspection. Compared to what you do inside a virtual call,

11.1. THE HARM 191

the extra dereference required seems petty and very likely
not to have any noticeable side effects other than the cost
of a dereference and the extra space taken up by the virtual
table pointer. The extra dereference before getting the pointer
to the function we want to call on this particular instance
seems to be a trivial addition, but let’s have a closer look at
what is going on.

A class that has derived from a base class with virtual
methods has a certain structure to it. Adding any virtual
methods to a class instantly adds a virtual table to the exe-
cutable, and a virtual table pointer as the implicit first data
member of the class. There is very little way around this. It’s
allowed in the language specification for the data layout of
classes to be up to the compiler to the point where they can
implement such things as virtual methods by adding hidden
members and generating new arrays of function pointers be-
hind the scenes. It is possible to do this differently, but it
appears most compilers implement virtual tables to store vir-
tual method function pointers. It’s important to remember
virtual calls are not an operating system level concept, and
they don’t exist as far as the CPU is concerned, they are just
an implementation detail of C++.

When we call a virtual method on a class we have to know
what code to run. Normally we need to know which entry in
the virtual table to access, and to do that we read the first
data member in order to access the right virtual table for
calling. This requires loading from the address of the class
into a register and adding an offset to the loaded value. Every
non-trivial virtual method call is a lookup into a table, so in
the compiled code, all virtual calls are really function pointer
array dereferences, which is where the offset comes in. It’s
the offset into the array of function pointers. Once the ad-
dress of the real function pointer is generated, only then can
instruction decoding begin. There are ways to not call into
the virtual table, notably with C++11, there has been some
progress with the final keyword that can help as classes
that cannot be overridden can now know that if they call

192 CHAPTER 11. WHAT’S WRONG?

into themselves, then they can call functions directly. This
doesn’t help for polymorphic calls, or call sites that access
the methods from the interface without knowing the concrete
type (see listing 11.1), but it can occasionally help with some
idioms such as private implementation (pImpl), and the cu-
riously recurring template pattern.

1 #include <stdio.h>
2
3 class B {
4 public:
5 B() {}
6 virtual ~B() {}
7 virtual void Call() { printf("Base\n"); }
8 void LocalCall () {
9 Call();

10 }
11 };
12
13 class D final : public B {
14 public:
15 D() {}
16 ~D() {}
17 virtual void Call() { printf("Derived\n"); }
18 void LocalCall () {
19 Call();
20 }
21 };
22
23 B *pb;
24 D *pd;
25
26 int main() {
27 D *d = new D;
28 pb = pd = d;
29
30 pb->LocalCall ();
31 // prints "Derived" via virtual call
32 pd->LocalCall ();
33 // prints "Derived" via direct call
34 }

Listing 11.1: A simple derived class

For multiple inheritance it is slightly more convoluted,
but basically, it’s still virtual tables, but now each function
will define which class of vtable it will be referencing.

So let’s count up the actual operations involved in this
method call: first we have a load, then an add, then another
load, then a branch. To almost all programmers this doesn’t
seem like a heavy cost to pay for runtime polymorphism.
Four operations per call so you can throw all your game en-
tities into one array and loop through them updating, ren-
dering, gathering collision state, spawning off sound effects.
This seems to be a good trade-off, but it was only a good
trade-off when these particular instructions were cheap.

11.1. THE HARM 193

Two out of the four instructions are loads, which don’t
seem like they should cost much, but unless you hit a nearby
cache, a load takes a long time and instructions take time to
decode. The add is very cheap2, to modify the register value
to address the correct function pointer, but the branch is not
always cheap as it doesn’t know where it’s going until the sec-
ond load completes. This could cause an instruction cache
miss. All in all, it’s common to see a chunk of time wasted
due to a single virtual call in any significantly large scale
game. In that chunk of time, the floating point unit alone
could have finished naı̈vely calculating lots of dot products,
or a decent pile of square roots. In the best case, the virtual
table pointer will already be in memory, the object type the
same as last time, so the function pointer address will be the
same, and therefore the function pointer will be in cache too,
and in that circumstance it’s likely the branch won’t stall as
the instructions are probably still in the cache too. But this
best case is not always the common case for all types of data.

Consider the alternative, where your function ends, and
you are returning some value, then calling into another func-
tion. The order of instructions is fairly well known, and to
the CPU looks very similar to a straight line. There are no
deviations from getting instructions based on just following
the program counter along each function in turn. It’s possi-
ble to guess quite far ahead the address of any new functions
that will be called, as none of them are dependent on data.
Even with lots of function calls, the fact they are deducible at
compile time makes them easy to prefetch, and pretranslate.

The implementation of C++ doesn’t like how we iterate
over objects. The standard way of iterating over a set of het-
erogeneous objects is to literally do that, grab an iterator and
call the virtual function on each object in turn. In normal
game code, this will involve loading the virtual table pointer
for each and every object. This causes a wait while loading
the cache line, and cannot easily be avoided. Once the vir-
tual table pointer is loaded, it can be used, with the constant

2Adding to a register before accessing memory is free on most platforms

194 CHAPTER 11. WHAT’S WRONG?

offset (the index of the virtual method), to find the function
pointer to call, however, due to the size of virtual functions
commonly found in game development, the table won’t be in
the cache. Naturally, this will cause another wait for load,
and once this load has finished, we can only hope the object
is actually the same type as the previous element, otherwise,
we will have to wait some more for the instructions to load.

Even without loads, not knowing which function will be
called until the data is loaded means you rely on a cache line
of information before you can be confident you are decoding
the right instructions.

The reason virtual functions in games are large is that
game developers have had it drilled into them that virtual
functions are okay, as long as you don’t use them in tight
loops, which invariably leads to them being used for more
architectural considerations such as hierarchies of object
types, or classes of solution helpers in tree-like problem-
solving systems (such as pathfinding, or behaviour trees).

Let’s go over this again: many developers now believe the
best way to use virtuals is to put large workloads into the
body of the virtual methods, so as to mitigate the overhead
of the virtual call mechanism. 3 However, doing this, you
can virtually guarantee not only will a large portion of the in-
struction and data cache be evicted by each call to update(),
but most branch predictor slots may become dirty too, and
fail to offer any benefit when the next update() runs. As-
suming virtual calls don’t add up because they are called
on high-level code is fine until they become the general pro-
gramming style, leading to developers failing to think about
how they affect the application, ultimately leading to millions
of virtual calls per second. All those inefficient calls are go-
ing to add up and impact the hardware, but they hardly ever
appear on any profiles. The issue isn’t that it’s not there, it’s
that it’s spread thinly over the whole of the processing of the

3There are parallels with task systems, where you want to mitigate the
cost of setup and tear down of tasks.

11.1. THE HARM 195

machine. They always appear somewhere in the code being
called.

Carlos Bueno’s book Mature Optimization Handbook[?],
talks about how it’s very easy to miss the real cause of slow-
ness by blindly following the low hanging fruit approach.
This is where the idea of creating a hypothesis can prove
useful, as when it turns out to not reap the expected re-
wards, you can retrace and regroup faster. For Facebook,
they traced what was causing evictions and optimised those
functions, not for speed, but to remove as much as possible
the chance that they evicted other data from the cache.

In C++, classes’ virtual tables store function pointers by
their class. The alternative is to have a virtual table for each
function and switch function pointer on the type of the call-
ing class. This works fine in practice and does save some of
the overhead as the virtual table would be the same for all
the calls in a single iteration of a group of objects. However,
C++ was designed to allow for runtime linking to other li-
braries, libraries with new classes that may inherit from the
existing codebase. The design had to allow a runtime linked
class to add new virtual methods, and have them callable
from the original running code. If C++ had gone with func-
tion oriented virtual tables, the language would have had to
runtime patch the virtual tables whenever a new library was
linked, whether at link-time for statically compiled additions,
or at runtime for dynamically linked libraries. As it is, us-
ing a virtual table per class offers the same functionality but
doesn’t require any link-time or runtime modification to the
virtual tables as the tables are oriented by the classes, which
by the language design are immutable during link-time.

Combining the organisation of virtual tables and the or-
der in which games tend to call methods, even when running
through lists in a highly predictable manner, cache misses
are commonplace. It’s not just the implementation of classes
that causes these cache misses, it’s any time data is the de-
ciding factor in which instructions are run. Games com-

196 CHAPTER 11. WHAT’S WRONG?

monly implement scripting languages, and these languages
are often interpreted and run on a virtual machine. However
the virtual machine or JIT compiler is implemented, there is
always an aspect of data controlling which instructions will
be called next, and this causes branch misprediction. This
is why, in general, interpreted languages are slower, they ei-
ther run code based on loaded data in the case of bytecode
interpreters or they compile code just in time, which though
it creates faster code, causes issues of its own.

When a developer implements an object-oriented frame-
work without using the built-in virtual functions, virtual ta-
bles and this pointers present in the C++ language, it doesn’t
reduce the chance of cache miss unless they use virtual ta-
bles by function rather than by class. But even when the
developer has been especially careful, the very fact they are
doing object-oriented programming with game developer ac-
cess patterns, that of calling singular virtual functions on
arrays of heterogeneous objects, they are still going to have
some of the same instruction decode and cache misses as
found with built-in virtuals. That is, the best they can hope
for is one less data dependent CPU state change per virtual
call. That still leaves the opportunity for two mispredictions.

So, with all this apparent inefficiency, what makes game
developers stick with object-oriented coding practices? As
game developers are frequently cited as a source of how the
bleeding edge of computer software development is progress-
ing, why have they not moved away wholesale from the prob-
lem and stopped using object-oriented development prac-
tices all together?

11.2 Mapping the problem

Claim: Objects provide a better mapping from the real world
description of the problem to the final code solution.

11.2. MAPPING THE PROBLEM 197

Object-oriented design when programming in games
starts with thinking about the game design in terms of
entities. Each entity in the game design is given a class,
such as ship, player, bullet, or score. Each object maintains
its own state, communicates with other objects through
methods, and provides encapsulation so when the imple-
mentation of a particular entity changes, the other objects
that use it or provide it with utility do not need to change.
Game developers like abstraction, because historically they
have had to write games for not just one target platform, but
usually at least two. In the past, it was between console
manufacturers, but now game developers have to manage
between Windows™ and console platforms, plus the mo-
bile targets too. The abstractions in the past were mostly
hardware access abstractions, and naturally some gameplay
abstractions as well, but as the game development indus-
try matured, we found common forms of abstractions for
areas such as physics, AI, and even player control. Finding
these common abstractions allowed for third party libraries,
and many of these use object-oriented design as well. It’s
quite common for libraries to interact with the game through
agents. These agent objects contain their own state data,
whether hidden or publicly accessible, and provide functions
by which they can be manipulated inside the constraints of
the system that provided them.

The game design inspired objects (such as ship, player,
level) keep hold of agents and use them to find out what’s
going on in their world. A player interacts with physics, in-
put, animation, other entities, and doing this through an
object-oriented API hides much of the details about what’s
actually required to do all these different tasks.

The entities in object-oriented design are containers for
data and a place to keep all the functions that manipulate
that data. Don’t confuse these entities with those of en-
tity systems, as the entities in object-oriented design are
immutable of class over their lifetime. An object-oriented
entity does not change class during its lifetime in C++ be-

198 CHAPTER 11. WHAT’S WRONG?

cause there is no process by which to reconstruct a class in
place in the language. As can be expected, if you don’t have
the right tools for the job, a good workman works around
it. Game developers don’t change the type of their objects
at runtime, instead, they create new and destroy old in the
case of a game entity that needs this functionality. But as
is often the case, because the feature is not present in the
language, it is underutilised even when it would make sense.

For example, in a first-person shooter, an object will be
declared to represent the animating player mesh, but when
the player dies, a clone would be made to represent the dead
body as a rag doll. The animating player object may be made
invisible and moved to their next spawn point while the dead
body object with its different set of virtual functions, and
different data, remains where the player died so as to let the
player watch their dead body. To achieve this sleight of hand,
where the dead body object sits in as a replacement for the
player once they are dead, copy constructors need to be de-
fined. When the player is spawned back into the game, the
player model will be made visible again, and if they wish to,
the player can go and visit their dead clone. This works re-
markably well, but it is a trick that would be unnecessary if
the player could become a dead rag doll rather than spawn
a clone of a different type. There is an inherent danger in
this too, the cloning could have bugs, and cause other is-
sues, and also if the player dies but somehow is allowed to
resurrect, then they have to find a way to convert the rag doll
back into the animating player, and that is no simple feat.

Another example is in AI. The finite state machines and
behaviour trees that run most game AI maintain all the data
necessary for all their potential states. If an AI has three
states, { Idle, Making-a-stand, Fleeing-in-terror } then it has
the data for all three states. If the Making-a-stand has a
scared-points accumulator for accounting their fear, so they
can fight, but only up until they are too scared to continue,
and the Fleeing-in-terror has a timer so they will flee, but
only for a certain time, then Idle will have these two unnec-

11.2. MAPPING THE PROBLEM 199

essary attributes as well. In this trivial example, the AI class
has three data entries, { state, how-scared, flee-time }, and
only one of these data entries is used by all three states. If
the AI could change type when it transitioned from state to
state, then it wouldn’t even need the state member, as that
functionality would be covered by the virtual table pointer.
The AI would only allocate space for each of the state track-
ing members when in the appropriate state. The best we can
do in C++ is to fake it by changing the virtual table pointer
by hand, dangerous but possible, or setting up a copy con-
structor for each possible transition.

Apart from immutable type, object-oriented development
also has a philosophical problem. Consider how humans
perceive objects in real life. There is always a context to every
observation. The humble table, when you look at it, you may
see it to be a table with four legs, made of wood and modestly
polished. If so, you will see it as being a brown colour, but
you will also see the reflection of the light. You will see the
grain, but when you think about what colour it is, you will
think of it as being one colour. However, if you have the
training of an artist, you will know what you see is not what is
actually there. There is no solid colour, and if you are looking
at the table, you cannot see its precise shape, but only infer
it. If you are inferring it is brown by the average light colour
entering your eye, then does it cease to be brown if you turn
off the light? What about if there is too much light and all
you can see is the reflection off the polished surface? If you
close one eye and look at its rectangular form from one of the
long sides, you will not see right angle corners, but instead,
a trapezium. We automatically adjust for this and classify
objects when we see them. We apply our prejudices to them
and lock them down to make reasoning about them easier.
This is why object-oriented development is so appealing to
us. However, what we find easy to consume as humans,
is not optimal for a computer. When we think about game
entities being objects, we think about them as wholes. But
a computer has no concept of objects, and only sees objects
as being badly organised data and functions randomly called

200 CHAPTER 11. WHAT’S WRONG?

on it.

If you take another example from the table, consider the
table to have legs about three feet long. That’s someone’s
standard table. If the legs are only one foot long, it could be
considered to be a coffee table. Short, but still usable as a
place to throw the magazines and leave your cups. But when
you get down to one inch long legs, it’s no longer a table, but
instead, just a large piece of wood with some stubs stuck on
it. We can happily classify the same item but with different
dimensions into three distinct classes of object. Table, coffee
table, a lump of wood with some little bits of wood on it. But,
at what point does the lump of wood become a coffee table?
Is it somewhere between 4 and 8 inch long legs? This is the
same problem as presented about sand, when does it transi-
tion from grains of sand to a pile of sand? How many grains
are a pile, are a dune? The answer must be that there is no
answer. The answer is also helpful in understanding how a
computer thinks. It doesn’t know the specific difference be-
tween our human classifications because to a certain degree
even humans don’t.

The class of an object is poorly defined by what it is, but
better by what it does. This is why duck typing is a strong
approach. We also realise, if a type is better defined by what
it can do, then when we get to the root of what a polymor-
phic type is, we find it is only polymorphic in terms of what
it can do. In C++, it’s clear a class with virtual functions can
be called as a runtime polymorphic instance, but it might
not have been clear that if it didn’t have those functions, it
would not need to be classified in the first place. The reason
multiple inheritance is useful stems from this. Multiple in-
heritance just means an object can behave, that is react, to
certain impulses. It has declared that it can fulfil some con-
tract of polymorphic function response. If polymorphism is
just the ability for an object to fulfil a functionality contract,
then we don’t need virtual calls to handle that every time, as
there are other ways to make code behave differently based
on the object.

11.2. MAPPING THE PROBLEM 201

In most games engines, the object-oriented approach
leads to a lot of objects in very deep hierarchies. A common
ancestor chain for an entity might be: PlayerEntity → Char-
acterEntity → MovingEntity → PhysicalEntity → Entity →
Serialisable → ReferenceCounted → Base.

These deep hierarchies virtually guarantee multiple indi-
rect calls when calling virtual methods, but they also cause
a lot of pain when it comes to cross-cutting code, that is
code that affects or is affected by unrelated concerns, or
concerns incongruous to the hierarchy. Consider a normal
game with characters moving around a scene. In the scene
you will have characters, the world, possibly some particle
effects, lights, some static and some dynamic. In this scene,
all these things need to be rendered, or used for rendering.
The traditional approach is to use multiple inheritance or to
make sure there is a Renderable base class somewhere in ev-
ery entity’s inheritance chain. But what about entities that
make noises? Do you add an audio emitter class as well?
What about entities that are serialised vs those that are ex-
plicitly managed by the level? What about those that are
so common they need a different memory manager (such as
the particles), or those that only optionally have to be ren-
dered (like trash, flowers, or grass in the distance). This has
been solved numerous times by putting all the most com-
mon functionality into the core base class for everything in
the game, with special exceptions for special circumstances,
such as when the level is animated, when a player character
is in an intro or death screen, or is a boss character (who is
special and deserves a little more code). These hacks are only
necessary if you don’t use multiple inheritance, but when
you use multiple inheritance you then start to weave a web
that could ultimately end up with virtual inheritance and the
complexity of state that brings with it. The compromise al-
most always turns out to be some form of cosmic base class
anti-pattern.

Object-oriented development is good at providing a hu-
man oriented representation of the problem in the source

202 CHAPTER 11. WHAT’S WRONG?

code, but bad at providing a machine representation of the
solution. It is bad at providing a framework for creating an
optimal solution, so the question remains: why are game
developers still using object-oriented techniques to develop
games? It’s possible it’s not about better design, but instead,
making it easier to change the code. It’s common knowl-
edge that game developers are constantly changing code to
match the natural evolution of the design of the game, right
up until launch. Does object-oriented development provide
a good way of making maintenance and modification simpler
or safer?

11.3 Internalised state

Claim: Encapsulation makes code more reusable. It’s eas-
ier to modify the implementation without affecting the usage.
Maintenance and refactoring become easy, quick, and safe.

The idea behind encapsulation is to provide a contract to
the person using the code rather than providing a raw imple-
mentation. In theory, well written object-oriented code that
uses encapsulation is immune to damage caused by chang-
ing how an object manipulates its data. If all the code us-
ing the object complies with the contract and never directly
uses any of the data members without going through acces-
sor functions, then no matter what you change about how
the class fulfils that contract, there won’t be any new bugs
introduced by any change. In theory, the object implemen-
tation can change in any way as long as the contract is not
modified, but only extended. This is the open closed prin-
ciple. A class should be open for extension, but closed for
modification.

A contract is meant to provide some guarantees about
how a complex system works. In practice, only unit testing
can provide these guarantees.

11.3. INTERNALISED STATE 203

Sometimes, programmers unwittingly rely on hidden fea-
tures of objects’ implementations. Sometimes the object they
rely on has a bug that just so happens to fit their use case.
If that bug is fixed, then the code using the object no longer
works as expected. The use of the contract, though it was
kept intact, has not helped the other piece of code to main-
tain working status across revisions. Instead, it provided
false hope that the returned values would not change. It
doesn’t even have to be a bug. Temporal couplings inside ob-
jects or accidental or undocumented features that go away in
later revisions can also damage the code using the contract
without breaking it.

Consider an implementation that maintained an internal
list in sorted order, and a use case that accidentally relied
on it (an unforeseen bug in the user’s use case, not an inten-
tional dependency), but when the maintainer pushes out a
performance enhancing update, the only thing the users are
going to see is a pile of new bugs, and they will likely assume
the performance update is suspect, not their own code.

A concrete example could be an item manager that kept
a list of items sorted by name. If the function returns all the
item types that match a filter, then the caller could iterate
the returned list until it found the item it wanted. To speed
things up, it could early-out if it found an item with a name
later than the item it was looking for, or it could do a binary
search of the returned list. In both those cases, if the inter-
nal representation changed to something that wasn’t ordered
by name, then the code would no longer work. If the internal
representation was changed so it was ordered by hash, then
the early-out and binary search would be completely broken.

In many linked list implementations, there is a decision
made about whether to store the length of the list or not. The
choice to store a count member will make multi-threaded ac-
cess slower, but the choice not to store it will make finding
the length of the list an O(n)operation. For situations where
you only want to find out whether the list is empty, if the ob-

204 CHAPTER 11. WHAT’S WRONG?

ject contract only supplies a get count() function, you can-
not know for sure whether it would be cheaper to check if
the count was greater than zero, or check if the begin() and
end() are the same. This is another example of the contract
being too little information.

Encapsulation only seems to provide a way to hide bugs
and cause assumptions in programmers. There is an old
saying about assumptions, and encapsulation doesn’t let you
confirm or deny them unless you have access to the source
code. If you have, and you need to look at it to find out
what went wrong, then all the encapsulation has done is
add another layer to work around rather than add any useful
functionality of its own.

11.4 Instance oriented development

Claim: Making every object an instance makes it very easy
to think about what an object’s responsibilities are, what its
lifetime looks like, and where it belongs in the world of objects.

The first problem with instance thinking is that every-
thing is centred around the idea of one item doing a thing,
and that is a sure way to lead to poor performance.

The second, and more pervasive issue with instance
thinking is it leads to thinking in the abstract about in-
stances, and using full objects as building blocks for thought
can lead to very inefficient algorithms. When you hide the
internal representation of an item even from the programmer
using it, you often introduce issues of translation from one
way of thinking about an object to another, and back again.
Sometimes you may have an item that needs to change an-
other object, but cannot reach it in the world it finds itself, so
has to send a message to its container to help it achieve the
goal of answering a question about another entity. Unfortu-
nately, it’s not uncommon for programs to lose sight of the

11.4. INSTANCE ORIENTED DEVELOPMENT 205

data requirement along these routes, and send more than
necessary in the query, or in the response, carrying around
not only unnecessary permissions, but also unnecessary
limitations due to related system state.

As an example of how things can go wrong, imagine a
city building game where the population has happiness rat-
ings. If each individual citizen has a happiness rating, then
they will need to calculate that happiness rating. Let’s as-
sume the number of citizens isn’t grossly overwhelming, with
maybe a maximum of a thousand buildings and up to ten
citizens per building. If we only calculate the happiness of
the citizens when necessary, it will speed things up, and
in at least one game where these numbers are similar, lazy
evaluation of the citizen happiness was the way things were
done. How the happiness is calculated can be an issue if it
is worked out from the perspective of the individual, rather
than the perspective of the city. If a citizen is happy when
they are close to work, close to local amenities, far from in-
dustrial locations, and able to get to recreational areas eas-
ily, then a lot of the happiness rating comes from a kind of
pathfinding. If the result of pathfinding is cached, then at
least the citizens in the same building can benefit, but ev-
ery building will have small differences in distances to each
of the different types of building. Running pathfinding over
that many instances is very expensive.

If instead, the city calculates happiness, it can build a
map of distances from each of the types of building under
consideration as a flood fill pass and create a general dis-
tance map of the whole city using a Floyd-Warshall algorithm
to help citizens decide on how close their places of work are.
Normally, substituting an O(n3)algorithm for an O(n2)could
be seen as silly, but the pathfinding is being done for each cit-
izen, so becomes O(n2m) and is not in fact algorithmically su-
perior. Finally, this is the real world, and doing the pathing
itself has other overheads, and running the Floyd-Warshall
algorithm to generate a lookup before calculating happiness
means the work to calculate happiness can be simpler (in

206 CHAPTER 11. WHAT’S WRONG?

data storage terms), and require fewer branches off into sup-
porting code. The Floyd-Warshall algorithm can also have a
partial update run upon it, using the existing map to indi-
cate which items need to be updated. If running from the
instance point of view, knowing a change to the topology or
the type of buildings nearby would require doing some form
of distance check per instance.

In conclusion, abstractions form the basis of solving diffi-
cult problems, but in games, we’re often not solving difficult
algorithmic problems at a gameplay level. To the contrary, we
have a tendency to abstract too early, and object-oriented de-
sign often gives us an easy and recognisable way to commit
to abstractions without rendering the costs apparent until
much later, when we have become too dependent upon them
to clear them away without impacting other code.

11.5 Hierarchical design vs change

Claim: Inheritance allows reuse of code by extension. Adding
new features is simple.

Inheritance was seen as a major reason to use classes in
C++ by game programmers. The obvious benefit was being
able to inherit from multiple interfaces to gain attributes or
agency in system objects such as physics, animation, and
rendering. In the early days of C++ adoption, the hierarchies
were shallow, not usually going much more than three layers
deep, but later it became commonplace to find more than
nine levels of ancestors in central classes such as that of
the player, their vehicles, or the AI players. For example, in
Unreal Tournament, the minigun ammo object had this:

Miniammo → TournamentAmmo → Ammo → Pickup →
Inventory → Actor → Object

Game developers use inheritance to provide a robust way
to implement polymorphism in games, where many game en-

11.5. HIERARCHICAL DESIGN VS CHANGE 207

tities can be updated, rendered, or queried en-mass, without
any hand coded checking of type. They also appreciate the
reduced copy-pasting, because inheriting from a class also
adds functionality to a class. This early form of mix-ins was
seen to reduce errors in coding as there were often times
where bugs only existed because a programmer had fixed
a bug in one place, but not all of them. Gradually, multiple
inheritance faded into interfaces only, the practice of only in-
heriting from one real class, and any others had to be pure
virtual interface classes as per the Java definition.

Although it seems like inheriting from class to extend its
functionality is safe, there are many circumstances where
classes don’t quite behave as expected when methods are
overridden. To extend a class, it is often necessary to read
the source, not just of the class you’re inheriting, but also
the classes it inherits too. If a base class creates a pure vir-
tual method, then it forces the child class to implement that
method. If this was for a good reason, then that should be
enforced, but you cannot enforce that every inheriting class
implements this method, only the first instantiable class in-
heriting it. This can lead to obscure bugs where a new class
sometimes acts or is treated like the class it is inheriting
from.

A feature missing from C++ also is the idea of being non-
virtual. You cannot declare a function as not being virtual.
That is, you can define that a function is an override, but
you cannot declare that it is not an override. This can cause
issues when common words are used, and a new virtual
method is brought into existence. If it overlaps extant func-
tions with the same signature, then you likely have a bug.

1 class A {
2 virtual void foo(int bar = 5) { cout << bar; }
3 };
4 class B : public A {
5 void foo(int bar = 7) { cout << bar * 2; }
6 };
7 int main(int argc , char *argv[]) {
8 A *a = new B;
9 a->foo();

10 return 0;
11 }

Listing 11.2: Runtime, compile-time, or link-time?

208 CHAPTER 11. WHAT’S WRONG?

Another pitfall of inheritance in C++ comes in the form
of runtime versus compile time linking. A good example is
default arguments on method calls and badly understood
overriding rules. What would you expect the output of the
program in listing 11.2 to be?

Would you be surprised to find out it reported a value of
10? Some code relies on the compiled state, some on run-
time. Adding new functionality to a class by extending it can
quickly become a dangerous game as classes from two lay-
ers down can cause coupling side effects, throw exceptions
(or worse, not throw an exception and quietly fail), circum-
vent your changes, or possibly just make it impossible to
implement your feature as they might already be taking up
the namespace or have some other incompatibility with your
plans, such as requiring a certain alignment or need to be
in a certain bank of ram.

Inheritance does provide a clean way of implementing
runtime polymorphism, but it’s not the only way as we saw
earlier. Adding a new feature by inheritance requires revis-
iting the base class, providing a default implementation, or
a pure virtual, then providing implementations for all the
classes that need to handle the new feature. This requires
modification to the base class, and possible touching all of
the child classes if the pure virtual route is taken. So even
though the compiler can help you find all the places where
the code needs to change, it has not made it significantly
easier to change the code.

Using a type member instead of a virtual table pointer can
give you the same runtime code linking, could be better for
cache misses, and could be easier to add new features and
reason about because it has less baggage when it comes to
implementing those new features, provides a very simple way
to mix and match capabilities compared to inheritance, and
keeps the polymorphic code in one place. For example, in
the fake virtual function go-forward, the class Car will step
on the gas. In the class Person, it will set the direction vec-

11.6. DIVISIONS OF LABOUR 209

tor. In the class UFO, it will also just set the direction vector.
This sounds like a job for a switch statement fall through.
In the fake virtual function re-fuel, the class Car and UFO
will start a re-fuel timer and remain stationary while their
fuelling-up animations play, whereas the Person class could
just reduce their stamina-potion count and be instantly re-
fuelled. Again, a switch statement with fall through provides
all the runtime polymorphism you need, but you don’t need
to multiple inherit in order to provide different functionality
on a per class per function level. Being able to pick what
each method does in a class is not something inheritance is
good at, but it is something desirable, and non inheritance
based polymorphism does allow it.

The original reason for using inheritance was that you
would not need to revisit the base class, or change any of
the existing code in order to extend and add functionality
to the codebase, however, it is highly likely you will at least
need to view the base class implementation, and with chang-
ing specifications in games, it’s also quite common to need
changes at the base class level. Inheritance also inhibits
certain types of analysis by locking people into thinking of
objects as having IS-A relationships with the other object
types in the game. A lot of flexibility is lost when a program-
mer is locked out of conceptualising objects as being com-
binations of features. Reducing multiple inheritance to in-
terfaces, though helping to reduce the code complexity, has
drawn a veil over the one good way of building up classes
as compound objects. Although not a good solution in itself
as it still abuses the cache, a switch on type seems to of-
fer similar functionality to virtual tables without some of the
associated baggage. So why put things in classes?

11.6 Divisions of labour

Claim: Modular architecture for reduced coupling and better
testing

210 CHAPTER 11. WHAT’S WRONG?

The object-oriented paradigm is seen as another tool in
the kit when it comes to ensuring quality of code. Strictly ad-
hering to the open closed principle, always using accessors,
methods, and inheritance to use or extend objects, program-
mers write significantly more modular code than they do if
programming from a purely procedural perspective. This
modularity separates each object’s code into units. These
units are collections of all the data and methods that act
upon the data. It has been written about many times that
testing objects is simpler because each object can be tested
in isolation.

However, we know it to be untrue, due to data being linked
together by purpose, and purposes being linked together by
data in a long chain of accidental relationships.

Object-oriented design suffers from the problem of errors
in communication. Objects are not systems, and systems
need to be tested, and systems comprise of not only objects,
but their inherent communication. The communication of
objects is difficult to test because in practice it is hard to iso-
late the interactions between classes. Object-oriented devel-
opment leads to an object-oriented view of the system which
makes it hard to isolate non-objects such as data trans-
forms, communication, and temporal coupling.

Modular architecture is good because it limits the poten-
tial damage caused by changes, but just like encapsulation
before, the contract to any module has to be unambiguous so
as to reduce the chance of external reliance on unintended
side effects of the implementation.

The reason object-oriented modular approach doesn’t
work as well is that the modules are defined by object
boundary, not by a higher level concept. Good examples
of modularity include stdio’s FILE, the CRT’s malloc/free,
The NvTriStrip library’s GenerateStrips. Each of these pro-
vides a solid, documented, narrow set of functions to access
functionality that could otherwise be overwhelming and dif-
ficult to reason about.

11.7. REUSABLE GENERIC CODE 211

Modularity in object-oriented development can offer pro-
tection from other programmers who don’t understand the
code. But why is a programmer that doesn’t understand the
code going to be safe even using a trivialised and simpli-
fied interface? An object’s methods are often the instruc-
tion manual for an object in the eyes of someone new to
the code, so writing all the important manipulation methods
in one block can give clues to anyone using the class. The
modularity is important here because game development ob-
jects are regularly large, offering a lot of functionality spread
across their many different aspects. Rather than find a way
to address cross-cutting concerns, game objects tend to ful-
fil all requirements rather than restrict themselves to their
original design. Because of this bloating, the modular ap-
proach, that is, collecting methods by their concern in the
source, can be beneficial to programmers coming at the ob-
ject fresh. The obvious way to fix this would be to use a
paradigm that supports cross-cutting concerns at a more
fundamental level, but object-oriented development in C++
seems to be inefficient at representing this in code.

If object-oriented development doesn’t increase modular-
ity in such a way as it provides better results than explicitly
modularising code, then what does it offer?

11.7 Reusable generic code

Claim: Faster development time through reuse of generic code

It is regarded as one of the holy grails of development to be
able to consistently reduce development overhead by reusing
old code. In order to stop wasting any of the investment in
time and effort, it’s been assumed it will be possible to put
together an application from existing code and only have to
write some minor new features. The unfortunate truth is
any interesting new features you want to add will probably
be incompatible with your old code and old way of laying out

212 CHAPTER 11. WHAT’S WRONG?

your data, and you will need to either rewrite the old code
to allow for the new feature, or rewrite the old code to allow
for the new data layout. If a software project can be built
from existing solutions, from objects invented to provide fea-
tures for an old project, then it’s probably not very complex.
Any project of significant complexity includes hundreds if
not thousands of special case objects that provide all par-
ticular needs of that project. For example, the vast major-
ity of games will have a player class, but almost none share
a common core set of attributes. Is there a world position
member in a game of poker? Is there a hit point count mem-
ber in the player of a racing game? Does the player have a
gamer tag in a purely offline game? Having a generic class
that can be reused doesn’t make the game easier to create,
all it does is move the specialisation into somewhere else.
Some game toolkits do this by allowing script to extend the
basic classes. Some game engines limit the gameplay to a
certain genre and allow extension away from that through
data-driven means. No one has so far created a game API,
because to do so, it would have to be so generic it wouldn’t
provide anything more than what we already have with our
languages we use for development.

Reuse, being hankered after by production, and thought
of so highly by anyone without much experience in making
games, has become an end in itself for many game devel-
opers. The pitfall of generics is a focus on keeping a class
generic enough to be reused or re-purposed without thought
as to why, or how. The first, the why, is a major stumbling
block and needs to be taught out of developers as quickly as
possible. Making something generic, for the sake of general-
ity, is not a valid goal. Making something generic in the first
instance adds time to development without adding value.
Some developers would cite this as short-sighted, however,
it is the how that deflates this argument. How do you gener-
alise a class if you only use it in one place? The implementa-
tion of a class is testable only so far as it can be tested, and
if you only use a class in one place, you can only test that
it works in one situation. The quality of a class’s reusability

11.7. REUSABLE GENERIC CODE 213

is inherently untestable until there is something to reuse it,
and the general rule of thumb is that it’s not reusable unless
there are at least three things using it. If you then generalise
the class, yet don’t have any other test cases than the first
situation, then all you can test is that you didn’t break the
class when generalising it. So, if you cannot guarantee that
the class works for other types or situations, all you have
done by generalising the class is added more code for bugs
to hide in. The resultant bugs are now hidden in code that
works, possibly even tested in its isolation, which means any
bugs introduced during this generalising have been stamped
and approved, and are now trusted.

Test-driven development implicitly denies generic coding
until the point where it is a good choice to do so. The only
time when it is a good choice to move code to a more generic
state, is when it reduces redundancy through reuse of com-
mon functionality.

Generic code has to fulfil more than just a basic set of
features if it is to be used in many situations. If you write a
templated array container, access to the array through the
square bracket operators would be considered a basic fea-
ture, but you will also want to write iterators for it and pos-
sibly add an insert routine to take the headache out of shuf-
fling the array up in memory. Little bugs can creep in if
you rewrite these functions whenever you need them, and
linked lists are notorious for having bugs in quick and dirty
implementations. To be fit for use by all users, any generic
container should provide a full set of methods for manipu-
lation, and the STL does that. There are hundreds of dif-
ferent functions to understand before you can be considered
an STL-expert, and you have to be an STL-expert before you
can be sure you’re writing efficient code with the STL. There
is a large amount of documentation available for the various
implementations of the STL. Most of the implementations of
the STL are very similar if not functionally the same. Even
so, it can take some time for a programmer to become a valu-
able STL programmer due to this need to learn another lan-

214 CHAPTER 11. WHAT’S WRONG?

guage. The programmer has to learn a new language, the
language of the STL, with its own nouns verbs and adjec-
tives. To limit this, many games companies have a much
reduced feature set reinterpretation of the STL that option-
ally provides better memory handling (because of the awk-
ward hardware), more choice for the containers (so you may
choose a hash-map, trie, or b-tree directly, rather than just a
map), or explicit implementations of simpler containers such
as stack or singly linked lists and their intrusive brethren.
These libraries are normally smaller in scope and are there-
fore easier to learn and hack than the STL variants, but they
still need to be learnt and that takes some time. In the past
this was a good compromise, but now the STL has extensive
online documentation, there is no excuse not to use the STL
except where memory overhead is very intrusive, such as
in the embedded space where main memory is measured in
kilobytes, or where compilation time is of massive concern4.

The takeaway from this, however, is that generic code still
needs to be learnt in order for the coder to be efficient, or not
cause accidental performance bottlenecks. If you go with
the STL, then at least you have a lot of documentation on
your side. If your game company implements an amazingly
complex template library, don’t expect any coders to use it
until they’ve had enough time to learn it, and that means,
if you write generic code, expect people to not use it unless
they come across it accidentally, or have been explicitly told
to, as they won’t know it’s there, or won’t trust it. In other
words, starting out by writing generic code is a good way to
write a lot of code quickly without adding any value to your
development.

4The STL is large, but not as large as some OS headers, so fight the right
battle first

